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1. Introduction 
Optimization is the process and result of achieving the most optimal way to solve a problem given 

a set of objectives and constraints. It is an important concept in many fields where one wishes to make 
a decision by selecting the best option, where each option has an associated utility or cost. The current 
optimization techniques, such as metaheuristic algorithms, are utilized for solving complex multi-di-
mensional problems, where classical mechanisms may not yield desirable results [1, 2]. Metaheuristics 
or nature-inspired optimization algorithms are a family of optimization algorithms based on principles 
in nature and natural phenomena such as living systems and hunting behaviors. Here, the focus is on 
the class of optimization algorithms that are based on the imitation of evolutionary process, swarm 
behaviors and principles of natural selection.  

These methods, such as Genetic Algorithms with mutation and crossover operations and Particle 
Swarm Optimization (PSO) with the flocking and swirling behavior of birds or fish, operate based on 
evolution [1, 3, 4]. Metaheuristic approaches are well known due to their excellent flexibility and 
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Abstract: Nowadays, real-world optimization problems are becoming increas-
ingly complex tasks, prompting the development of nature-inspired algo-
rithms that mimic biological phenomena to improve search performance and 
solution quality. The Mud Ring Algorithm (MRA), inspired by the cooperative 
hunting behavior of bottlenose dolphins, has shown promise but remains sen-
sitive to parameter settings, especially when balancing exploration and exploi-
tation. To address these limitations, this paper proposes the Enhanced Mud 
Ring Algorithm (EMRA), which introduces a novel mechanism to more effec-
tively manage the exploration-exploitation tradeoff. This modification allows 
the algorithm to escape local minima and explore the solution space more ef-
fectively. Numerical experiments on some standard benchmark functions as 
well as the difficult Congress on Evolutionary Computation 2019 benchmark 
suite show that EMRA outperforms the original MRA in terms of accuracy per-
formance and computational cost, especially when dealing with high-dimen-
sion and multi-peak functions. In addition, EMRA was used in three complex 
engineering optimization problem designs (welded beam, pressure vessel, and 
tension spring), and the results were found to be more accurate and reliable 
than MRA. These results validate the strength and applicability of EMRA as a 
general optimization tool to tackle complex problems from many different dis-
ciplines, including real-world problems requiring the exhaustive exploration 
of multiple options. In summary, this study shows that EMRA is an effective 
extension of metaheuristic optimization that is applicable in real-world prob-
lems. 
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robustness when solving hard optimization problems that do not need gradient information or the 
convexity condition. Previous studies [2, 5, 6] presented significant contributions in this area. These 
studies operated through an accurate balance between exploration (searching in the solution space) so 
as not to get stuck in local minima and exploitation (optimizing for the best solutions), so as to improve 
upon the best solutions found. This adaptive balance is typically achieved through two types of 
mechanism: one that promotes population diversity by managing trade-offs between good and poor 
solutions, and another that drives convergence by refining solutions. Additionally, many 
metaheuristics employ adaptive dynamics to occasionally accept worse solutions, allowing them to 
escape local optima and dynamically adjust their search strategy over time.  

Due to their adaptability and simplicity, there has been widespread application across various 
fields, from engineering design to data analysis and machine learning [7]. In addition, with 
advancements in technology and computer science, significant changes have taken place in various 
fields, such as healthcare [8]. Among these methods and algorithms, Mud Ring Algorithm (MRA) has 
been selected, which is a recently proposed meta-heuristic optimization procedure. It was inspired by 
the bottlenose dolphin's mud ring foraging behaviour. Algorithms are utilized to imitate their 
collaborative foraging activities in two phases: global search (exploration) mode and local search 
(exploitation) mode, which is an efficient approach to address complex optimization problems [9]. This 
algorithm has proven to be effective at addressing a wide range of real-world problems and it has been 
successfully applied across multiple domains, exhibiting strong performance in various search spaces, 
as discussed in the related work section [10, 11].  

The MRA has some limitations. For example, MRA is highly sensitive to the transition factor (K), 
which controls the balance between exploration and exploitation. If K is poorly tuned, it can result in 
premature convergence on the local optima or insufficient exploration of the solution space. This makes 
the algorithm reliant on the proper setting of K, which can limit its effectiveness across different 
optimization problems. To overcome this limitation in MRA, we introduce the Enhanced Mud Ring 
Algorithm (EMRA), which improves upon the original MRA to achieve superior performance in 
solving global optimization problems. The major benefits of this enhancement are as follows: 

• The proposed algorithm enhances MRA by introducing a better way to strike a balance be-
tween exploitation and exploration, thereby enhancing search efficiency and optimization. 

• EMRA is thoroughly evaluated using 23 standards benchmarks and CEC 2019 test functions, 
showing better performance than MRA and getting results that are competitive with other 
algorithms. 

• To validate its performance, the algorithm was applied to three functional constrained engi-
neering design problems, highlighting its strength in solving complex tasks. 

• The algorithm's efficiency and robustness have been enhanced for complicated optimization 
tasks.  

The rest of the paper is organized as follows: in section 2, we describe the MRA theory. Related 
work and some MRA applications in various domains are described in section 3. Section 4 discusses 
the EMRA proposed itself, as well as its improvements and modifications. We present a full 
performance vs. benchmark analysis study of EMRA in section 5, comparing it with MRA as well as 
popular optimization methods. EMRA is also applied to three engineering design problems (welded 
beam, pressure vessel and tension spring design) to demonstrate its capabilities in real-life optimization 
problems in section 6. Finally, section 7 summarizes the main findings and outlines directions for future 
research. 

2. Related Works 
This section gives an overview of MRA from three different points of view. First, it highlights 

recent research on optimization algorithms, emphasizing current trends and new developments. Sec-
ond, it presents practical examples of MRA being applied in various fields, demonstrating its effective-
ness in solving real-world optimization problems. Finally, it presents MRA in detail.  
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2.1. Optimization Algorithms: Trends and New Developments  
Various algorithms have been deployed for optimization problems, such as the well-known PSO 

[12]. PSO is extensively used in a variety of domains and could even contribute to improving security 
in cloud-based healthcare systems. Irshad et al. [13] invented a multi-objective approach and Bee-For-
aging Learning based PSO (BFL-PSO) to balance the hiding ratio, data modification, and content preser-
vation. Their method, BFL-PSO, performs better in security and the convergence rate, and reduces de-
lays and error rates. This new protocol was utilized to enhance cryptographic key generation for en-
hanced data cleansing and secure health data transfer, according to the organization. PSO is also effec-
tive in the operation of power systems. For instance, a modified PSO integrated with a Feedforward 
Neural Network was suggested by Chafi and Afrakhte [14]. Their hybrid model was applied to the 
tuning of parameters, yielding more accurate short-term load forecasts.  

The Grey Wolf Optimizer (GWO) presented by Mirjalili et al. [15] in 2014 is based on the social 
and hunting behavior of grey wolves in the wild. In another example, Hu et al. [16] proposed an im-
proved version of GWO, BGWO, for discrete-binary type optimization problems such as feature selec-
tion. In their experiments, the proposed BGWO outperformed a standard GWO and also achieved bet-
ter results with a faster convergence, especially for problems with large and complex datasets.  

Similarly, the Whale Optimization Algorithm (WOA), being inspired by the bubble-net hunting 
method of humpback whales proposed by Mirjalili and Lewis [17] , has shown its ability to solve serious 
optimization problems. Such a method makes it possible for the algorithm to search the space more 
fully and directly, and gains a solution with good performance. WOA has also been successfully used 
in other application areas, for instance, robotics. For example, Xu et al.  [18] proposed a new hybridiza-
tion of the two algorithms by proposing the algorithm IWOA-SA which combines IWOA and SA. They 
used this method to help a platoon of four robots to rapidly learn the fastest paths.  

Different applications have employed the Sine Cosine Algorithm (SCA) [19]. A multi-strategy ver-
sion called Enhanced Sine–Cosine Algorithm (ESCA) was recently proposed by Zhou and Shang to 
enhance the parameter identification in photovoltaic (PV) models. It was also more effective and flexi-
ble than conventional techniques such as PSO and Differential Evolution [20]. Additionally, Ragab et 
al. [21] employed SCA for tuning hyperparameters on a deep learning model for secure, privacy-pre-
serving healthcare systems based on blockchain.  

The Salp Swarm Algorithm (SSA), a swarm-based optimization algorithm recognized by Mirjalili 
et al. [22], mimics the aggregation of salp chains in the ocean. Despite its compatibility with both opti-
mization and model training, SSA has only been proven in experimental results. Yang et al. [23] pro-
posed a self-learning adaptation of SSA which modifies the search while running. It improved the abil-
ity of neural networks to learn from medical data as well as the algorithm to perform faster and better 
in relation to the original SSA.  

The Tree-Seed Algorithm (TSA) created by Kiran in 2015 is based on how trees dispense their 
seeds. It has been successfully used subsequently in various applications [24]. TSA has also been ap-
plied to determine the key factors in photovoltaic models. For example, Beşkirli and Dağ [25] demon-
strated that TSA was able to extract these values fast and accurately compared to other methods. TSA 
has also been employed to address numerical and engineering optimization challenges.  For example, 
Liu et al. [26] enhanced TSA by introducing a new variant. In this release, pattern search, dimension 
permutation, and elimination update mechanisms are considered to improve convergence rate and so-
lution precision in solving benchmark problems and real-world design problems. On a side note, the 
Harris Hawks Optimization (HHO) was initially devised by Mashaleh et al. [27]. It’s based on how 
Harris hawks hunt together [6]. It has been effectively used for spam detection with an accuracy of 
94.3%. Expanding on this, Akl et al. [28] proposed the algorithm of Improved Harris Hawks Optimiza-
tion. They also provided an enhancement of this version, which improved both exploration and ex-
ploitation. In particular, they used different location-based habitats during exploration to guide the 
algorithm on diverse regions of the solution space. They also introduced logarithm and exponent op-
erations to avoid the local minimum, which makes the algorithm more reliable overall. The Circle 
Search Algorithm (CSA) was proposed by Qais et al. [29] and uses circular trajectories to accelerate 
convergence in optimization problems. CSA has been applied successfully to different optimization 
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problems, especially for modeling the parameters in proton exchange membrane fuel cells (PEMFC). 
For instance, Qais et al. [30] proposed a modified version of the CSA in order to obtain a more precise 
electrical model of PEMFC which could determine the seven influential factors governing the dynamic 
behavior of PEMFCs. The last one is the Chaos Game Optimization (CGO), which was introduced by 
Talatahari and Azizi [31] employing both fractal patterns and randomness, which can contribute to 
more extensively searching the space and avoiding trapping. Thus far, CGO has achieved promising 
results in medical image classification. Mabrouk et al. [32] employed CGO, in combination with deep 
transfer learning in a healthcare Internet of Things (IoT) environment, to determine the most relevant 
features. They achieved high accuracy when classifying melanoma and leukemia images, and also re-
duced the computing time.  

2.2. Applications of the Mud Ring Algorithm Across Diverse Domains  
MRA has been extensively investigated by many research fields and is confirmed to be a flexible 

and efficient tool for handling difficult problems. It is particularly remarkable because it successfully 
balances between the exploitation of new possibilities and the exploitation of promising solutions, 
thereby being characterized by strong convergence properties [9]. There are also various works that 
have combined MRA with other optimization methods in order to improve its performance in solving 
different problems, for example MRA hybridized with the Elk Herd Optimizer. This section not only 
presents the latest applications of MRA but also its application in the analysis of feature selection, en-
ergy management, air quality prediction, health, and industrial problems. A detailed comparison of 
MRA applications in terms of usability, performance, and scalability is illustrated in table 1. 

Table 1: Comparative analysis of MRA applications in terms of usability, performance, and scalability. 
Ref. Application Problem & Setup Performance Scalability 

[33] 
Feature selection 
in medical da-
tasets. 

Applied on 13 real datasets, SVM-
based survival models 

Accuracy (Acc.) increases from 
94.37% to 95.77%, F1 score in-
crease to 94.55% 

Up to 90 features, bi-
nary mask encoding 

[10] 
TEG MPPT Con-
trol. 

Applied on 4-string TEG emula-
tor under dynamic temperature, 
on board MCU 

Acc. 99.95% power tracked vs 
99.14% (PSO) 

4 agents, runs on Ar-
duino Atmega2560; 
real-time 

[34] 
Air Quality Fore-
casting. 

Applied on 3 000 samples, 6 clas-
ses in dataset; 

Acc. 99.26% vs 98.34% 
(XGBoost), F1 97.75% vs 97.14% 

3 000 × (pollutants + 
weather) data 

[35] 
IoT Waste Rout-
ing Path. 

Smart bins with real-time fill-
level, optimize truck routes 

Less distance to collect waste 
bins to center vs static routes 

Scales to hundreds of 
bins, GPS-equipped 
trucks 

[36] 
ECG Disease Di-
agnosis. 

Biomedical signal classification 
Acc. Increase 4.2 pts 
(88.75→92.94 % avg), F1 score 
~90–94 % 

Preprocessed 3000 
ECG records 

[37] 
Wireless Sensor 
Network Trust 
Routing. 

100-node WSN with 50 mali-
cious; optimize CH-based trust 
routing 

Lifetime increase to 3050 
rounds; PDR 0.98 vs 0.92–0.96 

100 nodes; trust calcu-
late (direct/indirect/re-
cent) 

[38] 
Converter Modu-
lation for wind 
generator. 

3-phase to 6-phase matrix con-
verter for wind generator, mod 
functions tuned 

THD decrease to 2.2% 
6-phase topology; 
modulation function 
search 

[39] Network-Anom-
aly Detection. 

(DDoS) attacks on 11011 utilized 
records 

Accuracy (Acc.) increases from 
94.58% to 96.39% for intrusion 
detection 

Population counts 10, 
Max. iteration 50 

[40] 
Maternal-Risk 
Prediction. 

SVM and KNN parameter tun-
ing by MRA, applied on 13 real 
datasets. 

Prediction accuracy increased 
up to 17.08% 

Crossover over-
sampling technique 
used 

 

2.2.1. MRA in Feature Selection and Machine Learning 
One of the most notable applications of MRA is for feature selection to improve the accuracy of 

high-dimensional dataset classification. In a study by Bakrawy et al. [33], an MRA-based feature selec-
tion approach was proposed to enhance the survival forecast of children with hematopoietic stem-cell 
transplantation. Their investigation demonstrated that MRA can achieve better performance than 
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traditional feature selection methods, as measured by the substantially decreased number of features 
on the one hand and good prediction performance on the other. Both methods improve classification 
work by reducing dimensionality with no degradation of performance. Detecting Distributed Denial 
of Service (DDoS) attacks in Internet of Things – Software Defined Networking (IoT-SDN) is challeng-
ing due to the high traffic volume from distributed devices, the resource constraints of IoT nodes, and 
the dynamic SDN topology. In this paper, they provide a solution to the problem of detecting DDoS 
attacks in IoT-SDN based networks by building a deep learning-based anomaly detection model. The 
Predefined Mud Ring Algorithm(P-MRA) is applied to extract relevant features from the Network In-
trusion Detection by Information Security Centre of Excellence (IDS ISCX 2012) dataset that are essen-
tial for the correct detection of attack. P-MRA discards irrelevant data and enhances the performance 
of the Multi-Serial Stacked Network (Multi-SSN). The features selected improve learning, resulting in 
more accurate detection and less false positives. This application exemplifies the capability of MRA for 
feature-selection in cybersecurity that enables not only an improved detection performance but also an 
increased efficiency within sophisticated and resource-constrained IoT systems [39]. 

2.2.2. MRA in Renewable and Wind Energy Optimization 
In renewable energy, an MRA-based Maximum Power Point Tracking (MPPT) controller for cen-

tralized thermoelectric generators (TEG) is presented by Zafar et al. [10], where dynamic thermal gra-
dients are taken into account. The results revealed that MRA yielded fast convergence, local optima 
evading and high energy extraction efficiency enhancement. Unlike conventional MPPTs at the litera-
ture such as Perturb & Observe (P&O) and PSO, MRA presented better adaptability towards varying 
thermal environments. In this work, a hybrid MRA-(EHO) Elk Herd Optimizer is proposed to optimize 
the modulation functions to be applied in the Multiphase Matrix Converter for wind energy applica-
tions. It aims to seamlessly connect the six-phase induction generators to the three-phase grids. In this 
scenario, MRA’s global search capability offers optimal modulation indices, whereas EHO performs 
local refinement. This results in a 2.2% lower Total Harmonic Distortion (THD) than with previous 
methods [38]. 

2.2.3.   MRA in Air Quality Prediction 
A recent study by Sivanesh et al. [34] applied MRA in an ensemble voting-based deep-learning 

model for air quality forecasting in intelligent transportation systems. The proposed model utilized 
Long Short-Term Memory, deep belief networks, and stacked autoencoders for improved air quality 
forecasting. MRA was employed for hyperparameter optimization, with improved prediction accu-
racy. Their findings show the promise of MRA in deep learning models for dimensionality reduction 
in environmental use. 

2.2.4.  MRA in Healthcare and Medical Diagnosis  
MRA has been investigated in several studies for clinical work. In a study by Alluhaidan et al. 

[36]. MRA-auxiliary deep learning model was proposed for Electrocardiogram (ECG) monitoring and 
cardiovascular disease diagnosis. For feature extraction, the model adopted the Stacked Autoencoder 
Topographic Map and MRA was applied to optimize the hyperparameters in better classification ac-
curacy. The results indicate that MRA has significantly improved disease detection by improving both 
the model convergence and stability. In the development of an intelligent diagnostic system for the 
prediction of maternal health risk, MRA technology has also been successfully applied. Studies that 
combine MRA with deep learning have shown much better computing speed, feature selection effi-
ciency and disease classification accuracy. This article applies the MRA technique to improve mother 
health risk prediction accuracy, to optimize the hyperparameters of classifiers such as Support Vector 
Machine (SVM), Random Forest (RF) and K-Nearest Neighbor (KNN). In the first phase, MRA tunes 
the major parameters of the SVM model (MRA-SVM), then feeds it through multiple datasets for as-
sessment. In the second phase, in order to solve the problem of data imbalance, the crossover over-
sampling approach is put to use before training classifiers are also used to optimize the parameters for 
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RF and KNN. The results show dramatic improvements in prediction accuracy. When combined with 
oversampling, MRA performance reaches up to 17.08%. This confirms MRA as being a robust optimizer 
to enhance machine learning models for healthcare prediction tasks [40]. 

2.2.5. MRA in Smart Waste Management and IoT 
In the study Kona et al. [35], an efficient urban-focused smart waste management system that com-

bines IoT, sensors, and optimization algorithms to automate waste collection is proposed. In this appli-
cation, the MRA serves as a routing algorithm to propose the shortest route cost and therefore the fuel 
needed by the waste disposal trucks of a refuse collecting company during their daily rounds. MRA is 
a technique able to address the vehicle routing problem by devising the path, evaluating the conditions 
(e.g., bin fill level, vehicle capacity, travel time), and selecting the best route. 

2.2.6. MRA in Wireless Sensor Network 
The work by Maradona and Jaya [37] concentrates on improving the performance of a Wireless 

Sensor Network (WSN) by implementing the clustering and routing protocols in the most efficient 
manner by making use of the MRA algorithm. The overall goal of WSNs, in general, is to conserve 
energy and prolong the network lifetime by properly selecting efficient Cluster Heads and constructing 
energy-aware routing paths. MRA is adopted to address the cluster head election problem which con-
siders the nodes’ residual energy, distance and signal strength. When MRA is employed, it also demon-
strates savings in energy, improvements in network stability and better performance. Given its flexi-
bility, our approach is suitable for dynamic WSN environments were node status and data traffic are 
subject to frequent changes. 
 

2.3. Mud Ring Algorithm 
This sub-section provides a full explanation of the biological processes and behaviors that led to 

the development of MRA. It then presents how the algorithm works and its functioning principles, and 
sketches the steps in the pseudocode. The second subsection finishes with messy tables of all sub-phases 
of the algorithm and the corresponding equations that describe each sub-phase’s operation. 

2.3.1. Inspiration 
The MRA is based on the foraging behavior and mud-ring feeding strategy method of bottlenose 

dolphins, making MRA a new nature inspired optimization technique. Presented in 2022, MRA works 
by using mud plumes to confuse and surround prey'– replicating the hunting tactics of dolphins [9]. 
Similar to other population-based optimization methods, MRA randomly initializes a population of 
candidate solutions without prior knowledge of the optimal answer. Its intuitive method, efficient ex-
ploration and exploitation balance it, and its competitive convergence traits differentiate it from other 
optimization algorithms. However, MRA also faces potential challenges, particularly regarding its per-
formance in high-dimensional and complex optimization problems, which have prompted ongoing re-
search into algorithmic enhancements and improvements, especially balancing between exploration 
and exploitation [9, 33]. The detailed pseudocode of the MRA is shown in algorithm 1. 

 

 

 

 

 

http://doi.org/10.24017/science.2025.2.13


 
http://doi.org/10.24017/science.2025.2.13  184 
 

Algorithm 1: Mud ring algorithm.   
1. Initialize a population of dolphins randomly 𝐷𝐷𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2,3, … . ,𝑛𝑛 along with their velocities 𝑣𝑣𝑖𝑖 
2. Evaluate the fitness value for each dolphin 
3. Identify the best-performing dolphin position 𝐷𝐷∗ 
4. 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 (𝒕𝒕 <  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)    
5.             𝒇𝒇𝒇𝒇𝒇𝒇 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑛𝑛 
6.             Update the control parameters 𝐾𝐾,𝐶𝐶,𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙 
7.                   𝑖𝑖𝑖𝑖 |𝐾𝐾| ≥ 1: 
8.                            - Create a new solution by adjusting velocity 𝑣𝑣𝑖𝑖 using (Eq.3) 
9.                   𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: 
10.                            - Simulate the "mud ring" behavior 
11.                            - Update the dolphin’s location based on the cooperative mechanism (Eq.5) 
12.                   𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 
13.       𝒆𝒆𝒆𝒆𝒆𝒆 𝒇𝒇𝒇𝒇𝒇𝒇 
14.     Handle boundary constraints for dolphins outside the search limits 
15.     Recalculate the fitness value for each dolphin 
16.     Update 𝐷𝐷∗, if a better solution is found 
17.     Increment iteration counter: 𝑡𝑡 = 𝑡𝑡 + 1 
18. 𝒆𝒆𝒆𝒆𝒆𝒆 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 
19. Return 𝐷𝐷∗ as the optimal solution 

2.3.2. The MRA Algorithm Phases 
The procedural framework of the MRA consists of several key phases, which are outlined below. 

The following sections provide a detailed discussion of each step: 

• Searching for Prey (Exploration) 
The exploration phase simulates dolphins employing echolocation to randomly search for prey. 

Dolphins adjust their positions based on sound loudness, which decreases as they approach prey, rep-
resented mathematically as follows: 

       𝐾𝐾 = 2𝑎𝑎. 𝑟𝑟 − 𝑎𝑎                                            (1)    

where (𝑎𝑎) is calculated by: 𝑎𝑎 = 2 �1 − 𝑡𝑡
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

�                                                    (2)     

  

Here,  (𝐾𝐾) sets a balance of exploration to exploitation,  (𝑟𝑟) is a random vector in the range be-
tween 0 and 1, and (𝑡𝑡) represents the current iteration number. Also, (𝑎𝑎) is a control variable used in-
side the MRA algorithm's loop. The dolphin’s positions are updated using velocities, given by: 

        𝐷𝐷→𝑡𝑡 = 𝐷𝐷→𝑡𝑡−1 + 𝑉𝑉→𝑡𝑡                                        (3)          
  

Where (𝐷𝐷→𝑡𝑡) denotes the dolphin’s position at iteration (𝑡𝑡), and 𝑉𝑉𝑡𝑡 is the dolphin's velocity vector. 
This movement allows the dolphins to discover the search space in a diverse and wide-reaching manner 
during the early stages of the algorithm [9]. 

• Mud Ring Feeding (Exploitation) 
Once prey is detected, dolphins switch to the exploitation phase by forming a mud ring around 

the best-known prey location. The mathematical representation of this behavior is: 

𝐷𝐷→𝑡𝑡 = 𝐷𝐷→∗𝑡𝑡−1 ∗ sin(2𝜋𝜋 ∗ 𝑙𝑙) − 𝐾𝐾→ ∗ 𝐴𝐴→                                                  (4) 

where (𝐷𝐷→∗𝑡𝑡−1) is the position of the most remarkable dolphin identified so far,  (𝑙𝑙) is a random 
number [0,1], and (𝐴𝐴) is defined as: 

𝐴𝐴→ = |𝐶𝐶→ ∗ 𝐷𝐷→∗𝑡𝑡−1 − 𝐷𝐷→𝑡𝑡−1|                                                                       (5) 
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The coefficient (𝐶𝐶) is calculated as:      𝐶𝐶 = 2 ∗ 𝑟𝑟                                            (6) 

where (𝑟𝑟) is again a random-vector between (0 and 1). These parameters ensure that the dolphins 
efficiently encircle and approach the optimal solution, maintaining a balance between local search (ex-
ploitation) and global search (exploration) [9]. 

3. Materials and Methods  
The EMRA’s goals are to enhance the novel MRA’s performance by dynamically balancing the 

local search (exploration) and global search (exploitation) phases. In the original MRA, the key param-
eter (𝐾𝐾), which controls this balance, is calculated by a static function dependent on a single linear 
parameter (𝑎𝑎). In EMRA, the parameter (𝐾𝐾) is calculated in three distinct phases according to the pro-
gression of (𝑡𝑡), as shown in functions No. (7, 8, and 9): 

Early Exploration Phase: if  � 𝑡𝑡
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

�  < 0.3, then 

𝐾𝐾 = �(2𝑎𝑎𝑎𝑎 − 𝑎𝑎) ∗ �1 − 𝑡𝑡
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

� + 0.1 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(1, dim)�                                           (7)   

• Here, (𝑟𝑟)is a random-number in [0,1], and (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) introduces a small Gaussian noise and this 
phase encourages strong exploration by amplifying randomness and allowing wider search 
space coverage. 

Balanced Phase: if  0.3 < � 𝑡𝑡
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

�  < 0.7, then 

𝐾𝐾 = (2𝑎𝑎𝑎𝑎 − 𝑎𝑎) ∗ 𝑒𝑒𝑒𝑒𝑒𝑒
−� 𝑡𝑡

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
10

� 

                                                         (8) 

• The exponential decay reduces the impact of randomness gradually and this phase provides a 
balance between exploration and then exploitation, focusing the search around promising ar-
eas without losing diversity. By doing so, the algorithm can explore new areas while refining 
known good solutions, enhancing its ability to increase the probability of discovering the global 
optimum and avoid local optima. 

Exploitation Phase: if � 𝑡𝑡
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

� ≥ 0.7 

                 𝐾𝐾 = 0.5 ∗ (2𝑎𝑎𝑎𝑎 − 𝑎𝑎)                                                          (9)                                   

• The parameter is scaled down to concentrate on an intensive local search around the best-
known solutions and this phase accelerates convergence and refines solutions with reduced 
randomness. 

In addition, EMRA implements a penalty function for managing constraints. Solutions that exceed 
variable limits or other problem limitations suffer a penalty equivalent to the level of the violation, like 
function no. (10). 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ∑ (𝑚𝑚𝑚𝑚𝑚𝑚 (0, 𝑥𝑥𝑗𝑗 − 𝑢𝑢𝑢𝑢))2 + (𝑚𝑚𝑚𝑚𝑚𝑚 (0, 𝑙𝑙𝑙𝑙 − 𝑥𝑥𝑗𝑗))2)𝑑𝑑𝑑𝑑𝑑𝑑
𝑗𝑗=1                           (10) 

• (𝑙𝑙𝑙𝑙) and (𝑢𝑢𝑢𝑢) are used to keep the search within valid limits for each variable in the optimiza-
tion problem and (𝑥𝑥𝑗𝑗) is used to specify the positions of each agent. 

During the fitness evaluation, this penalty is added to the objective function value to discourage 
infeasible solutions and guide the search within valid regions, so at each iteration, the dolphin positions 
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are updated according to the adaptive (𝐾𝐾), bounded within the search space, and evaluated for fitness 
with penalties applied as needed. The algorithm continues until reaching (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚), ultimately returning 
the best feasible solution found. These modifications improve the algorithm’s search balance and 
constraint handling, resulting in better optimization performance than the original. A detailed pseudo-
code and flowchart representation of EMRA is shown in figure 1 and algorithm 2. 

 

Figure 1: Flowchart illustration of EMRA. 
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Algorithm 2: Enhanced mud ring algorithm.   
1. Initialize a population of dolphins randomly 𝐷𝐷𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2,3, … . ,𝑛𝑛 along with their velocities 𝑣𝑣𝑖𝑖 
2. Compute penalty using Eq. (10) and evaluate the fitness value for each dolphin 
3. Identify the best-performing dolphin position 𝐷𝐷∗ 
4. 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 (𝒕𝒕 <  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)   
5.  Compute parameter 𝑎𝑎, using Eq. (2) 
6.             𝒇𝒇𝒇𝒇𝒇𝒇 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑛𝑛 
7.             𝑖𝑖𝑖𝑖 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 < 0.3 
8.             Compute parameter 𝐾𝐾 using Eq. (7) 
9.                 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 < 0.7 
10.                  Compute parameter 𝐾𝐾 using Eq. (8) 
11.                   𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: 
12.                   Compute parameter 𝐾𝐾 using Eq. (9) 
13.                 end 
14.      Update the control parameters 𝐾𝐾,𝐶𝐶, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙 
15.               𝑖𝑖𝑖𝑖 |𝐾𝐾| ≥ 1: 
16.                      - Create a new solution by adjusting velocity 𝑣𝑣𝑖𝑖 using (Eq.3) 
17.                 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: 
18.                      - Update the dolphin’s location based on the cooperative mechanism (Eq.4) 
19.                   𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 
20.             𝒆𝒆𝒆𝒆𝒆𝒆 𝒇𝒇𝒇𝒇𝒇𝒇 
21.     Handle boundary constraints for dolphins outside the search limits 
22.     Recalculate the fitness value for each dolphin 
23.     Update 𝐷𝐷∗, if a better solution is found 
24.     Increment iteration counter: 𝑡𝑡 = 𝑡𝑡 + 1 
25. 𝒆𝒆𝒆𝒆𝒆𝒆 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 
26. Return 𝐷𝐷∗ as the optimal solution 

 

4. Results 
4.1. Experimental Configuration and Evaluation Approaches 
All benchmark experiments were conducted using MATLAB R2023b on a Windows 11 (64-bit) 

based machine with 8 GB of RAM and an Intel Core i5-1334U 1.30GHZ CPU. To get reliable results, the 
first population was created at random for each execution. Both methods ran for 500 iterations with a 
population of 30 and all test runs were repeated 30 times to ensure that the experimental data was 
statistically significant. We also used MATLAB implementations of nine well-known, state-of-the-art 
optimization algorithms for a comprehensive comparative evaluation, specifically of CSA, SCA, SSA, 
HHO, WOA, PSO, TSA, GWO and CGO to perform performance comparisons with EMRA. The 
evaluation was conducted in such a way that the performance analysis was as comprehensive as 
possible based on two bench mark test set,s one with 23 standards and another with 10 CEC-2019 
functions. Several important aspects were used if the EMRA had been carried out: 

• Mean and standard deviation: This was used to show the average result and how stable the 
algorithm is across multiple runs. 

• Statistical significance Test: Wilcoxon rank-sum and T-tests were used to check whether the 
differences between algorithms were meaningful (p-value < 0.05). 

• Fair Initialization: All algorithms were tested with the same randomly generated starting 
population to ensure a fair comparison. 

• Graphical Representation: Box and whisker plots were used to show how the performance 
results vary across different runs. 

• Friedman Mean Rank Method: This method ranks algorithms across many functions and 
helps to compare their overall performance. 

4.2. Comparative Analysis of EMRA with Original MRA Using Standard Benchmark Functions 
In terms of the optimization problems, a set of 23 standard benchmark functions were taken for 

comparison. The functions were divided into three groups based on their nature: 1) unimodal (F1-F7), 
2) multimodal (F8-F13) and 3) fixed-dimension multimodal (F14-F23).   
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4.2.1. Evaluation Using Uni-modal Functions (F1–F7) 
The average (Avg.)  and standard deviation (Std.) metrics were used to measure the accuracy and 

consistency of EMRA in identifying optimal solutions within smooth search spaces, as shown in table 
2 (Table A1 in the appendix provides extra details). Despite consistently achieving optimal results sim-
ilar to MRA in functions F1, F2, F3, and F4, EMRA effectively demonstrates its reliability and efficiency 
across these benchmark functions, never producing the worst results in terms of average performance 
or standard deviation. In F7, we obtained a lower result (8.402E-05) compared to the original (9.004E-
05), indicating an improvement in performance. Regarding standard deviations representing the con-
sistency and stability of the algorithm, EMRA performs better than MRA in two out of seven functions. 
In F5, EMRA shows better stability with a standard deviation of (5.241E+00), which is slower than 
MRA’s (1.291E+01). Among the other functions, F7 also showed a similar improvement with EMRA 
showing lower stability with a standard deviation of (6.971E-05) compared to MRA (8.957E-05). MRA 
has a better consistency in F6 with a standard deviation (8.396E-07), although some variance is ob-
served.  

 Table 2: Performance of EMRA compared to the original MRA on unimodal functions (F1 to F7). 

4.2.2.  Evaluation Using Multimodal Functions (F8–F13) 
Using the same evaluation metrics, EMRA outperforms MRA in three out of six multimodal func-

tions, demonstrating its capability to explore complex landscapes and locate the global optimum as 
presented in table 3 (Table A2 in the appendix provides more details). Regarding the average, in F8, 
EMRA achieves a lower average (-9.102E+03) compared to MRA (-6.620E+03), highlighting its effective-
ness in escaping local optima. Similarly, in F12, EMRA attains a lower average (3.829E-10) compared to 
MRA (6.012E-09). In F13, EMRA achieves a lower average (7.378E-09) compared to MRA's (8.358E-08). 
Nevertheless, in F9 and F11, the algorithms reach the best result of 0, which means that they perform 
equally well. However, EMRA still shows a better exploration process for most multimodal functions. 

In terms of the standard deviation, EMRA seems to be more robust other than in two of the mul-
timodal functions among the six. In F12, EMRA achieves higher stability with a smaller standard devi-
ation value of 7.340E-10 than MRA’s (1.368E-08), for a more stable performance across runs. The same 
is observed for EMRA (denoted F13), where EMRA beats MRA in consistency by having a standard 
deviation of (1.560E-08), which is far less than MRA’s (1.383E-07). Additionally, in F9 and F11, EMRA 
obtained the same result for the standard deviations, which indicated no change in variance. These 
findings emphasize EMRA’s enhanced stability and accuracy in solving multimodal functions. 

 
Table 3: Performance of EMRA with original MRA on Multi-modal functions (F8 to F13). 

Fun. EMRA MRA 
Avg. Std. Avg. Std. 

F8 -9.102E+03 2.169E+03 -6.620E+03 1.990E+03 
F9 0 0 0 0 

F10 4.441E-16 3.009E-31 4.441E-16 3.009E-31 
F11 0 0 0 0 
F12 3.829E-10 7.340E-10 6.012E-09 1.368E-08 
F13 7.378E-09 1.560E-08 8.358E-08 1.383E-07 

 

Fun. 
EMRA MRA 

Avg. Std. Avg. Std. 
F1 0 0 0 0 
F2 0 0 0 0 
F3 0 0 0 0 
F4 0 0 0 0 
F5 2.775E+01 5.241E+00 2.105E+01 1.291E+01 
F6 3.811E-06 7.029E-06 4.788E-07 8.396E-07 
F7 8.402E-05 6.971E-05 9.004E-05 8.957E-05 
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4.2.3. Evaluation Using Fixed-Dimension Multimodal Functions (F14–F23) 
This group of functions is particularly valuable for testing the balance between exploration and 

exploitation in optimization algorithms. As shown in table 4 (Table A3 in the appendix provides extra 
details about the functions), with respect to performance, EMRA demonstrates a significant improve-
ment over MRA in fixed-dimension multimodal functions. In these functions, EMRA outperforms 
MRA in six out of ten, showcasing its superior optimization capability. For instance, significant contri-
butions are made in F14, F15, and F16. In F14 and F15, EMRA achieves smaller averages of (1.387E+00) 
and (7.692E-04) compared to MRA's (4.111E+00) and (1.006E-03), respectively. Especially in F16, EMRA 
attains a lower average of (-9.652E-01) compared to MRA (1.027E+00), highlighting its superior optimi-
zation performance.  

Further highlighting its capability in exploration, in this group of benchmark functions, significant 
contributions are made in F21, F22, and F23. EMRA achieves lower averages of (-7.604E+00), (-
7.214E+00), and (-7.291E+00) in F21, F22, and F23, respectively, compared to MRA's (-1.015E+01), ( -
1.040E+01) and (-1.054E+01), improving the way it works by addressing complex fixed-dimension mul-
timodal optimization challenges.  

Regarding standard deviation, EMRA has greater consistency in F14, demonstrating enhanced re-
liability with a standard deviation of (2.131E+00), surpassing MRA’s (5.250E+00). In F15, EMRA's stand-
ard deviation is (2.880E-04), which is lower than MRA's (3.831E-04). This trend continues in F16 with a 
lower standard deviation (5.774E-02) compared to MRA’s (5.113E-03). In F19 and F20, EMRA’s achieve-
ment of lower values indicates a more stable and reliable performance across multiple runs. In F19, 
EMRA demonstrates improved stability by achieving a lower standard deviation (6.110E-02), indicat-
ing more consistent performance across multiple runs compared to MRA’s (6.786E-02). Similarly, in 
F20, EMRA outperforms MRA in terms of reliability, with a lower standard deviation (1.788E-01) com-
pared to MRA’s (2.059E-01), strengthening its capability to deliver consistent outcomes in challenging 
optimization landscapes. 

 
Table 4: Performance of EMRA with original MRA in fixed-dimension multimodal functions (F14 to F23). 

Fun. 
EMRA MRA 

Avg. Std. Avg. Std. 
F14 1.387E+00 2.131E+00 4.111E+00 5.250E+00 
F15 7.692E-04 2.880E-04 1.006E-03 3.831E-04 
F16 -9.652E-01 5.774E-02 -1.027E+00 5.113E-03 
F17 4.299E-01 2.629E-02 4.252E-01 2.078E-02 
F18 1.276E+01 8.843E+00 8.366E+00 5.650E+00 
F19 -3.735E+00 6.110E-02 -3.734E+00 6.786E-02 
F20 -2.686E+00 1.788E-01 -2.704E+00 2.059E-01 
F21 -7.604E+00 2.592E+00 -1.015E+01 1.199E-03 
F22 -7.214E+00 2.648E+00 -1.040E+01 2.816E-03 
F23 -7.291E+00 2.694E+00 -1.054E+01 1.566E-03 

4.3. Comparative Analysis of EMRA with MRA Using CEC2019 Benchmark Functions 
Regarding performance, as presented in table 5 (Table A4 in the appendix provides information 

about the functions), EMRA outperformed MRA in six out of ten functions, highlighting its  
effectiveness in tackling complex optimization challenges. In F3, EMRA exhibits a lower average 
(1.3703E+01) compared to MRA's (1.3705E+01), which indicates its superior ability to move through 
complex landscapes and avoid local optima. In F4, EMRA outperforms MRA with a mean of 
(1.657E+04) versus (3.027E+04), showing its efficiency in locating the global optimum for challenging 
optimization problems. For F5, EMRA is better with an average of (6.455E+00) compared to MRA's 
(8.261E+00), which further validates its optimization capability. In F7, EMRA continues to dominate by 
achieving a lower average (1.201E+03) than MRA’s (1.903E+03), highlighting its stability and efficiency 
across multiple iterations. In F8, EMRA outperforms MRA with a mean of (7.326E+00) over (7.875E+00), 
demonstrating its ability to handle complex multimodal functions efficiently. Finally, in F9, EMRA 
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continues to perform well, averaging (2.496E+03) compared to MRA's (4.510E+03), indicating its supe-
riority in tackling CEC-2019 benchmark functions. 

In terms of the standard deviations, EMRA achieves better consistency in eight out of the ten func-
tions, exhibiting a zero-standard deviation in F1, indicating perfect stability. From F2 to F10, EMRA 
achieves lower standard deviation values than MRA in all functions except F9, indicating more stable 
and reliable behavior across the runs. For instance, in F2, EMRA records (3.651E+03), outperforming 
MRA's (4.696E+03). Similarly, in F5, EMRA achieves (8.004E-01), which is significantly better than 
MRA’s (1.071E+00), confirming better consistency. However, in F9, MRA slightly surpasses EMRA in 
terms of stability with a standard deviation of (5.494E+02) compared to EMRA’s (7.041E+02). Overall, 
these results affirm that EMRA offers more consistent optimization behavior in the majority of CEC-
2019 benchmark functions. 

 
Table 5: Performance comparison of EMRA and MRA on CEC2019 benchmark functions. 

 
4.4. Statistical Evaluation 
There are clear differences in performance between the original MRA and the enhanced MRA, 

relative to the 23 standard benchmark functions. Table 6 shows that EMRA outperforms MRA across a 
number of functions, with particular gains in F8, F12, F13, F14, F15 and F16 where the p-value is less 
than < (0.05), indicating significant progress and a dash (–) in this table denotes values that are not 
available. For instance, in F8, EMRA gets an average of (-9.102E+03), while MRA gets an average of (-
6.620E+03). The p-value, which is equal to (2.198E-05), shows a statistically significant enhancement. In 
F12 and F13, EMRA outperforms MRA with p-values of (2.825E-02) and (3.979E-03). This proves that 
EMRA is more efficient at solving these functions. In addition, F14, F15, and F16, EMRA yields better 
outcomes in these optimization goods with p values (1.084E-02), (8.982E-03), and (2.806E-07), respec-
tively.  

Moreover, in F21, F22, and F23, EMRA was able to outperform MRA with p-values of 1.375E-06, 
1.415E-08, and 1.403E-08, respectively. In other words, EMRA was the unquestionable superior method 
in more intricate multidimensional optimization problems. EMRA also performs better in F18 with a 
p-value of 2.534E-02, which goes to show how effective it is. However, several functions, including (F1, 
F2, F3, F4, F9, F10, F11, F17, F19, and F20), demonstrate p-values beyond (0.05), indicating an absence 
of statistically significant differences between EMRA and MRA. In F1, F2, and F3, both algorithms yield 
identical outcomes and there is no variation, signifying no performance disparity. In F19 and F20, p-
values of 9.252E-01 and 7.184E-01, respectively, indicate that EMRA's changes did not produce signifi-
cant enhancements compared to MRA for these functions. 

The evaluation of MRA and EMRA using the CEC-2019 benchmark functions highlights signifi-
cant performance differences. As shown in Table 5, EMRA demonstrates statistically significant im-
provements over MRA in multiple functions, particularly in (F3, F4, F5, F6, F7, F8, F9, and F10) where 
the p-values are below 0.05, indicating notable enhancements. For instance, in F3, EMRA achieves an 
average of (1.3703E+01) compared to MRA’s (1.3705E+01), with a p-value of (1.206E-10), confirming a 
statistically significant difference. Similarly, in F4, EMRA outperforms MRA with an average of 
(1.657E+04) versus (3.027E+04), and a p-value of (1.702E-08), highlighting meaningful improvement. In 

Fun. 
                                            EMRA                  MRA 

Avg. Std. Avg. Std. 
F1 1.000E+00 0 1.000E+00 0 
F2 1.595E+04 3.651E+03 1.642E+04 4.696E+03 
F3 1.3703E+01 5.395E-04 1.3705E+01 1.068E-03 
F4 1.657E+04 5.100E+03 3.027E+04 1.027E+04 
F5 6.455E+00 8.004E-01 8.261E+00 1.071E+00 
F6 1.342E+01 7.876E-01 1.299E+01 8.024E-01 
F7 1.201E+03 1.553E+02 1.903E+03 3.447E+02 
F8 7.326E+00 3.213E-01 7.875E+00 3.459E-01 
F9 2.496E+03 7.041E+02 4.510E+03 5.494E+02 

F10 2.178E+01 1.095E-01 2.164E+01 1.173E-01 
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functions like F5 and F6, EMRA also demonstrates superior performance, achieving p-values of 6.366E-
10 and 3.926E-02, respectively, suggesting a strong advantage over MRA. Furthermore, in F7, F8, and 
F9, EMRA maintains its superiority with p-values of 1.604E-14, 3.375E-08, and 7.145E-18, respectively, 
reinforcing its effectiveness in handling these optimization problems. Additionally, in F10, EMRA 
achieves an average of (2.178E+01) compared to MRA’s (2.164E+01), with a p-value of (2.074E-05), con-
firming its significant edge. 

On the other hand, F1 and F2 exhibit p-values above > (0.05), demonstrating no statistically signif-
icant difference between EMRA and MRA. In F1, both algorithms yield identical results (1.00E+00) and 
signify no variation in performance. Similarly, in F2, the p-value of 6.665E-01 suggests that the perfor-
mance difference between EMRA and MRA is not statistically significant. According to the results, 
EMRA performs much better than MRA in several test functions, with statistically significant improve-
ments in key optimization tasks. 

 
Table 6 : The p-values of the comparison between EMRA and MRA across standard benchmark functions and the CEC-2019 

suite. 

 
4.5. Convergence Behavior Analysis of EMRA against MRA 
The convergence characteristics of EMRA and MRA were evaluated using CEC-2019 benchmark 

functions F1 to F10, as illustrated in figure 2. In functions F3, F4, F5, F7, F8, and F9, EMRA demonstrates 
a significantly faster and smoother convergence trend compared to MRA. In these cases, EMRA not 
only reaches the optimum in fewer iterations but also achieves lower fitness values, indicating better 
optimization performance. In functions F1 and F2, both algorithms converge to the same optimal value 
from the beginning, suggesting equivalent performance. However, in F6, MRA shows slightly better 
convergence in the later iterations, surpassing EMRA’s performance as it continues to improve while 
EMRA plateaus. Overall, EMRA outperforms MRA in seven out of ten functions, highlighting its 
stronger convergence speed and solution quality across most test cases. 
 

 Standard Benchmark Functions  CEC-2019 Functions 
Function p-value Function p-value Function p-value 

F1 – F12 2.825E-02 F1 – 
F2 – F13 3.979E-03 F2 – 
F3 – F14 1.084E-02 F3 1.206E-10 
F4 – F15 8.982E-03 F4 1.702E-08 
F5 – F16 – F5 6.366E-10 
F6 – F17 – F6 – 
F7 – F18 – F7 1.604E-14 
F8 2.198E-05 F19 – F8 3.375E-08 
F9 – F20 – F9 7.145E-18 

F10 – F21 – F10 – 
F11 – F22 –   

  F23 –   
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Figure 2: Convergence behavior of EMRA and MRA over iterations for the CEC2019 functions, where (A) corresponds to F3, 
(B) to F4, (C) to F5, (D) to F7, (E) to F8, and (F) to F9. 
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4.6. Evaluating the EMRA with Meta-heuristic Algorithms Using Standard Benchmark 
Functions 

The effectiveness of the EMRA algorithm was evaluated by comparing it with nine recently devel-
oped and widely recognized metaheuristic algorithms across 23 standard benchmark functions. These 
include CSA, SCA, SSA, HHO, WOA, PSO, TSA, GWO and CGO. The goal of this comparison is to 
demonstrate the performance capabilities of EMRA. This comparison study wants to show not just 
EMRA's effectiveness but also its strength, competitiveness, and ability to solve several optimization 
challenges with different degrees of complexity. 

4.6.1. Unimodal Standard Benchmark Functions (F1–F7) 
An evaluation of unimodal functions (F1–F7), as shown in table 7, reveals key performance differ-

ences between EMRA and nine competing metaheuristic algorithms. EMRA outperforms the other al-
gorithms in five out of the seven functions, particularly in F1, F2, F3, F4 and F7, where it achieves a 
perfect average of (0.00E+00) with zero average performance in F1 to F4. This highlights EMRA's strong 
ability to solve simpler unimodal functions with high precision. However, in F5, EMRA does not per-
form as well, achieving an average of (2.78E+01), while other algorithms such as CSA achieve 
(0.00E+00). Similarly, in F6, EMRA has an average of (3.81E-06), outperforming some algorithms but 
still lagging behind the top-ranking ones. Conversely, in F7, EMRA achieves a perfect average of (8.40E-
05), demonstrating its superior exploitation ability in this function.  

The standard deviation values indicate the stability of EMRA’s performance. In F1 to F4, EMRA 
maintains an optimal standard deviation of (0.00E+00), reflecting absolute consistency across the runs. 
However, in F5, EMRA records a standard deviation of (5.24E+00), suggesting fluctuations in the re-
sults, whereas CSA and HHO maintain more stable performances. In F6, EMRA achieves (7.03E-06), 
outperforming WOA (1.44E-02) but being less stable than CSA (0.00E+00). In F7, EMRA demonstrates 
good stability, with a standard deviation of (6.97E-05), which is lower than CSA (7.10E-04) and SCA 
(5.99E-04), confirming its reliability in this function. Compared to other algorithms, EMRA shows a 
balance between consistency and performance, although it does not always achieve the lowest varia-
bility. 

The p-value analysis highlights EMRA’s statistical differences compared to other algorithms. In 
F1 to F4, EMRA achieves optimal values with no variance in p-values, indicating no difference from 
high-performing algorithms like CSA. In F5, the p-value of (6.47E-13) suggests EMRA underperforms 
compared to CSA and CGO. However, in F6 with a p-value of (5.81E-03), EMRA performs significantly 
better and differently from weaker algorithms like GWO and WOA. The strongest significance appears 
in F7, where a p-value of (3.77E-09) confirms EMRA’s superior performance over SSA, SCA, and HHO. 
While EMRA excels in some functions, areas such as F5 require improvement to achieve greater statis-
tical dominance. 

Among the compared algorithms, EMRA demonstrated outstanding performance, achieving the 
top rank in most unimodal benchmark functions, notably ranking first for functions F1 through F4 and 
F7. Others, such as CSA and CGO, also showed competitive performance, frequently occupying top-
tier rankings. Conversely, algorithms such as PSO and TSA showed comparatively weaker results, of-
ten ranking in lower positions across multiple functions. These rankings clearly illustrate variations in 
performance, underscoring EMRA’s robustness and effectiveness relative to other state of the art opti-
mization algorithms in diverse problem scenarios. 
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Table 7: Statistical comparison of EMRA and other metaheuristic algorithms in unimodal benchmark functions (F1–F7) 

Algo-
rithm 

Function/ 
F1 F2 F3 F4 F5 F6 F7 

Metric 

EMRA 
Average. 0 0 0 0 2.78E+01 3.81E-06 8.40E-05 

Std. 0 0 0 0 5.24E+00 7.03E-06 6.97E-05 
Ranking 1 1 1 1 9 6 1 

CSA 

Average. 3.85E-235 5.89E-116 5.48E-213 1.22E-119 0 0 4.35E-04 
Std. 0 2.64E-115 0 6.66E-119 0 0 7.10E-04 

p-value – 2.28E-01 – 3.20E-01 3.26E-36 4.33E-03 9.27E-03 
Ranking 2 2 2 2 1 1 4 

SCA 

Average. 2.77E-10 2.55E-08 5.59E-08 1.67E+00 6.20E+01 4.71E+00 4.53E-04 
Std. 8.17E-10 3.99E-08 1.34E-07 2.28E+00 1.33E+02 1.69E+00 5.99E-04 

p-value 6.81E-02 8.94E-04 2.602E-02 1.66E-04 1.65E-01 5.42E-22 1.41E-03 
Ranking 7 7 5 9 10 10 5 

SSA 

Average. 2.67E-07 1.41E-01 6.01E+02 1.06E+00 1.29E+01 1.69E-07 3.62E-02 
Std. 6.20E-07 1.54E-01 1.06E+03 1.00E+00 1.45E+01 1.88E-07 2.85E-02 

p-value 2.16E-02 5.19E-06 2.98E-03 3.07E-07 2.05E-06 6.27E-03 3.77E-09 
Ranking 8 10 9 8 7 3 9 

HHO 

Average. 6.76E-104 2.13E-50 1.88E-75 1.02E-106 9.80E-07 2.52E-06 1.34E-04 
Std. 3.38E-103 1.15E-49 1.03E-74 5.58E-106 5.28E-06 9.41E-06 1.26E-04 

p-value 2.77E-01 3.13E-01 3.20E-01 3.21E-01 3.26E-36 5.49E-01 6.23E-02 
Ranking 4 5 4 3 2 5 2 

WOA 

Average. 1.46E-75 2.49E-51 5.82E-01 3.08E-02 2.96E+00 7.55E-03 1.27E-03 
Std. 7.80E-75 9.38E-51 2.59E+00 7.53E-02 8.52E+00 1.44E-02 1.55E-03 

p-value 3.10E-01 1.52E-01 2.23E-01 2.90E-02 1.16E-19 5.81E-03 9.34E-05 
Ranking 5 4 7 5 3 7 6 

PSO 

Average. 1.31E-06 4.19E-04 1.10E+03 3.11E+00 1.10E+01 4.70E-07 3.93E-02 
Std. 4.52E-06 1.20E-03 1.15E+03 2.09E+00 1.32E+01 6.34E-07 2.58E-02 

p-value 1.19E-01 6.17E-02 2.63E-06 3.27E-11 2.27E-08 0.00E+00 1.75E-11 
Ranking 9 9 10 10 6 4 10 

TSA 

Average. 1.08E-04 1.40E-05 1.95E+02 8.66E-01 6.17E+00 6.31E-01 3.63E-03 
Std. 2.20E-04 2.62E-05 5.72E+02 8.29E-01 8.26E+00 7.69E-01 3.66E-03 

p-value 9.63E-03 4.90E-03 6.67E-02 3.86E-07 1.77E-17 0.00E+00 1.93E-06 
Ranking 10 8 8 6 4 9 8 

GWO 

Average. 8.35E-38 1.24E-22 1.13E-07 1.01E+00 1.63E+01 4.40E-01 1.51E-03 
Std. 1.79E-37 1.59E-22 3.67E-07 1.77E+00 1.56E+01 3.69E-01 9.66E-04 

p-value 1.32E-02 7.13E-05 9.61E-02 2.93E-03 3.38E-04 1.80E-08 4.56E-11 
Ranking 6 6 6 7 8 8 7 

CGO 

Average. 8.52E-137 1.14E-71 7.67E-96 6.38E-58 1.09E+01 2.09E-17 3.37E-04 
Std. 3.72E-136 2.30E-71 3.68E-95 2.33E-57 8.55E+00 8.20E-17 2.10E-04 

p-value 2.16E-01 8.91E-03 2.58E-01 1.40E-01 6.47E-13 4.33E-03 4.90E-08 
Ranking 3 3 3 4 5 2 3 

4.6.2. Multimodal Standard Benchmark Functions (F8–F13) 
In an evaluation of multimodal functions (F8–F23), EMRA outperforms the other algorithms in 

two out of the six functions. In terms of averages, as shown in table 8, EMRA achieves an average of (-
9.10E+03) in F8, ranking 10th, while CSA, HHO and WOA perform significantly better. In F9, EMRA 
records (0.00E+00), ranking first, matching the results of CSA, HHO, and CGO. In F10, EMRA ranks 
2nd with (4.441E-16), only slightly behind CSA (4.44E-16) and HHO, which share the same value. For 
F11, EMRA ranks first with an average of (0.00E+00), sharing the top spot with CSA, HHO, WOA, GWO 
and CGO. In F12, EMRA ranks 3rd with an average of (3.83E-10), behind CSA and CGO. In F13, EMRA 
achieves (7.38E-09), ranking 2nd, outperforming HHO (1.07E-06) among the top three ranking. 
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Table 8: Statistical comparison of EMRA and other metaheuristic algorithms in multimodal standard benchmark functions (F8–F13). 

 
Regarding consistency, EMRA shows zero standard deviation in F9 and F11, confirming absolute 

stability, similar to CSA, HHO, and CGO. However, in F8, EMRA has a high standard deviation of 
(2.17E+03), whereas CSA (1.85E-12) and HHO (4.62E-05) display greater stability. In F10, EMRA 
achieves (3.009E-31), maintaining strong consistency close to CSA (3.01E-31). In F12, EMRA’s standard 
deviation is (7.34E-10), higher than CSA (1.11E-47) but lower than SCA (1.68E+00), suggesting better 
stability compared to weaker algorithms. In F13, EMRA has a standard deviation of (1.56E-08), ranking 
among the more stable algorithms but slightly higher than CSA.  

The p-value analysis highlights EMRA’s statistical differences across F8 to F13. In F8, a p-value of 
(3.36E-12) confirms that CSA and HHO outperform EMRA. In F9, the p-value of equals sign indicates 
no difference, as multiple algorithms achieve the same result. F10 (1.59E-05) and F11 (3.11E-01) confirm 

Algorithm 
Function/ 

F8 F9 F10 F11 F12 F13 
Metric 

EMRA 
Average. -9.10E+03 0 4.44E-16 0 3.83E-10 7.38E-09 

Std. 2.17E+03 0 3.01E-31 0 7.34E-10 1.56E-08 
Ranking 10 1 1 1 3 2 

CSA 

Average. -1.26E+04 0 4.44E-16 0 1.57E-32 1.35E-32 
Std. 1.85E-12 0 3.01E-31 0 1.11E-47 5.57E-48 

p-value 3.36E-12 – 3.21E-01 – 5.92E-03 1.21E-02 
Ranking 1 1 1 1 1 1 

SCA 

Average. -1.15E+04 3.20E+01 1.25E-01 1.60E-06 1.01E+00 2.24E+00 
Std. 1.62E+03 4.88E+01 6.54E-01 8.56E-06 1.68E+00 7.87E-01 

p-value 1.27E-05 6.73E-04 3.01E-01 3.11E-01 1.77E-03 1.86E-22 
Ranking 9 9 7 7 10 10 

SSA 

Average. -1.21E+04 8.95E+00 8.07E-01 1.50E-02 8.85E-02 5.28E-02 
Std. 1.23E+03 1.39E+01 1.00E+00 1.17E-02 3.19E-01 8.18E-02 

p-value 1.50E-08 8.33E-04 4.58E-05 2.57E-09 1.35E-01 8.04E-04 
Ranking 7 7 9 9 7 6 

HHO 

Average. -1.26E+04 0 4.44E-16 0 8.83E-08 1.07E-06 
Std. 4.62E-05 0 3.01E-31 0 3.96E-07 4.11E-06 

p-value 3.36E-12 – 1.00E+00 – 2.29E-01 1.63E-01 
Ranking 2 1 1 1 4 3 

WOA 

Average. -1.25E+04 1.89E-15 4.71E-15 0 1.20E-04 1.50E-02 
Std. 6.49E+02 1.04E-14 2.86E-15 0 5.70E-04 5.92E-02 

p-value 4.14E-11 3.21E-01 3.26E-11 –  2.55E-01 1.70E-01 
Ranking 4 5 5 1 5 5 

PSO 

Average. -1.22E+04 2.00E+01 1.24E+00 5.92E-03 3.99E-01 2.81E-01 
Std. 1.09E+03 3.12E+01 1.52E+00 8.57E-03 9.57E-01 1.47E+00 

p-value 3.96E-09 8.90E-04 3.78E-05 3.72E-04 2.61E-02 3.00E-01 
Ranking 6 8 10 8 8 7 

TSA 

Average. -1.23E+04 1.66E-03 4.96E-03 2.16E-02 7.17E-03 3.09E-01 
Std. 6.98E+02 8.86E-03 2.10E-02 6.59E-02 8.56E-03 3.90E-01 

p-value 1.45E-10 3.10E-01 2.02E-01 7.75E-02 2.40E-05 5.90E-05 
Ranking 5 6 6 10 6 8 

GWO 

Average. -1.15E+04 5.24E+01 2.39E-01 0 4.01E-01 3.57E-01 
Std. 1.64E+03 4.56E+01 9.10E-01 0 1.15E+00 2.82E-01 

p-value 8.64E-06 4.56E-08 1.55E-01 – 6.21E-02 4.00E-09 
Ranking 8 10 8 1 9 9 

CGO 

Average. -1.25E+04 0 1.98E-15 0 1.61E-21 1.05E-02 
Std. 6.49E+02 0 1.79E-15 0 3.78E-21 1.75E-02 

p-value 4.13E-11 – 1.59E-05 – 5.92E-03 1.73E-03 
Ranking 3 1 4 1 2 4 
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EMRA’s advantage over weaker algorithms, while F12 (1.77E-03) and F13 (8.04E-04) highlight its sig-
nificant superiority over competitors like SCA and SSA. Overall, EMRA exhibits statistically significant 
advantages in F10, F11, F12, and F13, confirming its strong performance in these functions. However, 
the high p-value in F9 indicates similar performance across multiple algorithms, while the low p-value 
in F8 suggests that CSA and HHO maintain a distinct advantage over EMRA in that function. 

The performance of various algorithms was assessed using multimodal benchmark functions, with 
the rankings reflecting their effectiveness in consistently finding near-optimal solutions. CSA exhibited 
excellent performance, ranking first across multiple functions (F8, F9, F10, F11, F12, and F13). EMRA 
also performed strongly, ranking first for functions F9, F10, and F11, and securing top-tier positions in 
others. Conversely, algorithms such as SCA, SSA, and PSO frequently ranked lower, highlighting their 
relatively weaker effectiveness on these multimodal problems. These findings clearly underline the ro-
bust capability of algorithms like CSA and EMRA in navigating complex, multimodal search spaces.  

4.6.3. Fixed-Dimension Multimodal Standard Benchmark Functions (F14–F23) 
As shown in tables 9 and 10, EMRA outperforms several competing algorithms in F14, F18 and 

F20. For instance, in F14, EMRA achieves an average of (1.39E+00) competing closely with SSA and 
PSO, while in F18, it reaches (1.28E+01), outperforming weaker algorithms but still trailing behind SCA. 
In F20, EMRA records an average of (-2.69E+00), competing with CSA and SCA, which achieves a sig-
nificantly better result. However, in F21, F22, and F23, EMRA lags behind, with averages of (-7.60E+00), 
(-7.21E+00), and (-7.29E+00), achieving an average performance higher than CSA and other top per-
formers. While EMRA demonstrates promising performance in some functions, it struggles in others, 
indicating room for further optimization and enhancement. 

In terms of consistency, EMRA exhibits stable performance in F15 and F17, with relatively low 
standard deviations of (2.88E-04) and (2.63E-02), demonstrating its reliability in these functions. How-
ever, in F14, F19 and F20, EMRA shows higher variability, with standard deviations reaching 
(2.13E+00), (6.11E-02), and (1.79E-01), respectively, indicating fluctuations in performance. In compari-
son, CSA and other top-ranking algorithms maintain near-zero standard deviations in these cases, re-
inforcing their superior stability over EMRA. 

EMRA achieves statistically significant differences in F15 and F18, where p-values of (1.57E-03) 
and (1.14E-07) confirm that it performs competitively in these functions. However, in F14, F16, F21, and 
F22, p-values below (1.00E-08) indicate that CSA and other leading algorithms significantly outperform 
EMRA. In F19 and F20, EMRA's performance is statistically weaker than that of CSA and SSA, reinforc-
ing the need for improvement in these functions. Overall, EMRA performs well in F15 and F18, showing 
competitive averages and stable results, but struggles in most other fixed-dimension multimodal func-
tions, particularly in F21 to F23. The high standard deviations and low p-values in several cases indicate 
that EMRA is less consistent compared to top-ranking algorithms like CSA and SSA. While it demon-
strates strengths in select functions, further improvements are needed to enhance its robustness across 
all fixed-dimension multimodal benchmarks. 

Analyzing the ranking of EMRA in multimodal fixed-dimension benchmark functions (F14–F23) 
demonstrates competitiveness in specific functions, particularly attaining slightly higher rankings in 
F14 which achieved 7th place, and F18 and F20, both of which achieved 8th place. However, despite 
these positive outcomes, EMRA generally ranked lower across this benchmark set, occupying ranks of 
9th and 10th positions in multiple functions, such as F15, F16, F17, F19, F21, F22, and F23. These con-
sistently lower rankings indicate that EMRA faces challenges in reliably achieving top tier positions 
across multimodal fixed-dimension problems, highlighting opportunities for further enhancement in 
algorithm robustness and performance stability. 
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Table 9: Statistical comparison of EMRA and other metaheuristic algorithms in fixed-dimension multimodal standard bench-
mark functions (F14–F18). 

 
Table 10: Statistical comparison of EMRA and other metaheuristic algorithms in fixed-dimension multimodal standard bench-

mark functions (F19–F23). 

Algorithm 
Function/ 

F19 F20 F21 F22 F23 
Metric 

EMRA 

Average. -3.74E+00 -2.69E+00 -7.60E+00 -7.21E+00 -7.29E+00 
Std. 6.11E-02 1.79E-01 2.59E+00 2.65E+00 2.69E+00 

Ranking 9 8 9 10 10 

Algorithm 
Function/ 

F14 F15 F16 F17 F18 
Metric 

 

EMRA 

Average. 1.39E+00 7.69E-04 -9.65E-01 4.30E-01 1.28E+01 
Std. 2.13E+00 2.88E-04 5.77E-02 2.63E-02 8.84E+00 

Ranking 7 9 9 9 8 

CSA 

Average. 9.98E-01 1.67E-03 3.69E-222 8.45E-01 3.27E+01 
Std. 3.39E-16 1.10E-18 0.00E+00 9.16E-16 1.45E-14 

p-value 3.21E-01 1.82E-24 1.96E-64 5.51E-63 7.37E-18 

Ranking 1 10 10 10 10 

SCA 

Average. 2.03E+00 6.48E-04 -1.03E+00 4.00E-01 3.00E+00 
Std. 1.85E+00 4.88E-04 1.17E-04 2.13E-03 4.48E-05 

p-value 2.15E-01 2.46E-01 4.46E-08 5.80E-08 1.14E-07 

Ranking 9 8 8 8 6 

SSA 

Average. 1.06E+00 5.45E-04 -1.03E+00 3.98E-01 3.00E+00 

Std. 2.52E-01 2.31E-04 1.58E-14 7.70E-15 1.87E-13 
p-value 4.13E-01 1.57E-03 4.29E-08 1.02E-08 1.14E-07 

Ranking 6 7 3 3 3 

HHO 

Average. 9.98E-01 3.30E-04 -1.03E+00 3.98E-01 3.00E+00 

Std. 1.15E-11 2.38E-05 4.91E-10 6.74E-06 1.43E-06 
p-value 3.21E-01 1.73E-11 4.29E-08 1.02E-08 1.14E-07 

Ranking 3 2 4 4 4 

WOA 

Average. 1.39E+00 3.13E-04 -1.03E+00 3.98E-01 3.90E+00 
Std. 1.79E+00 9.85E-06 5.83E-10 1.51E-05 4.94E+00 

p-value 9.96E-01 4.78E-12 4.29E-08 1.03E-08 1.18E-05 

Ranking 8 1 5 6 7 

PSO 

Average. 1.03E+00 3.91E-04 -1.03E+00 3.98E-01 3.00E+00 
Std. 1.81E-01 1.07E-04 0.00E+00 1.13E-16 3.03E-15 

p-value 3.66E-01 7.72E-09 4.29E-08 1.02E-08 1.14E-07 

Ranking 5 5 1 1 2 

TSA 

Average. 9.98E-01 4.07E-04 -1.03E+00 3.98E-01 3.00E+01 

Std. 1.53E-06 3.50E-04 5.86E-06 1.17E-04 3.68E+00 
p-value 3.21E-01 5.19E-05 4.29E-08 1.06E-08 5.18E-14 

Ranking 4 6 7 7 9 

GWO 

Average. 2.89E+00 3.68E-04 -1.03E+00 3.98E-01 3.00E+00 

Std. 3.64E+00 9.97E-05 8.09E-08 3.89E-06 2.50E-05 
p-value 5.56E-02 1.31E-09 4.29E-08 1.02E-08 1.14E-07 

Ranking 10 4 6 5 5 

CGO 

Average. 9.98E-01 3.38E-04 -1.03E+00 3.98E-01 3.00E+00 
Std. 3.39E-16 1.67E-04 0 1.13E-16 4.52E-16 

p-value 3.21E-01 2.06E-09 4.29E-08 1.02E-08 1.14E-07 

Ranking 1 3 1 1 1 

http://doi.org/10.24017/science.2025.2.13


 
http://doi.org/10.24017/science.2025.2.13  198 
 

Table 10: continue 

CSA 

Average. -1.90E+00 -1.17E+00 -1.02E+01 -1.04E+01 -1.05E+01 
Std. 6.78E-16 2.26E-16 3.61E-15 0.00E+00 3.61E-15 

p-value 3.81E-79 1.41E-47 1.37E-06 1.40E-08 1.39E-08 

Ranking 10 10 1 1 2 

 
 

As shown in table 11, our proposed EMRA algorithm achieved a respectable mean rank of 5.5, 
demonstrating strong capabilities across various problem types. CGO obtained the best overall perfor-
mance with the lowest score of 2.5, followed by HHO and CSA with scores of 3.3 and 3.7, respectively. 
WOA also performed well, earning a rank of 4.6. In contrast, SCA recorded the highest mean rank of 
8.2, indicating comparatively weaker results. While EMRA performed notably well in several bench-
marks, particularly those involving unimodal and multimodal problems, CGO and HHO delivered 
more consistent and superior performance across the entire test suite. 

 
 
 

SCA 

Average. -3.85E+00 -2.64E+00 -6.75E+00 -7.73E+00 -8.49E+00 
Std. 4.09E-03 3.96E-01 2.12E+00 2.22E+00 2.06E+00 

p-value 1.04E-14 5.58E-01 1.68E-01 4.20E-01 5.81E-02 

Ranking 7 9 10 9 9 

SSA 

Average. -3.86E+00 -3.22E+00 -9.65E+00 -9.88E+00 -1.00E+01 

Std. 5.58E-11 5.72E-02 1.54E+00 1.61E+00 1.64E+00 
p-value 1.84E-16 1.88E-22 4.64E-04 1.62E-05 1.64E-05 

Ranking 3 6 6 6 6 

HHO 

Average. -3.86E+00 -3.09E+00 -9.98E+00 -1.00E+01 -1.04E+01 

Std. 2.31E-03 1.07E-01 9.31E-01 1.35E+00 9.87E-01 
p-value 3.82E-16 3.28E-15 1.47E-05 2.48E-06 2.41E-07 

Ranking 5 7 2 5 4 

WOA 

Average. -3.86E+00 -3.31E+00 -9.81E+00 -1.04E+01 -1.05E+01 
Std. 7.95E-03 4.29E-02 1.29E+00 3.31E-03 9.49E-04 

p-value 1.96E-15 4.41E-26 1.01E-04 1.41E-08 1.40E-08 

Ranking 6 1 5 2 3 

PSO 

Average. -3.86E+00 -3.26E+00 -8.97E+00 -8.91E+00 -1.00E+01 
Std. 2.71E-15 8.32E-02 2.18E+00 2.54E+00 1.65E+00 

p-value 1.84E-16 9.91E-23 3.10E-02 1.39E-02 1.68E-05 

Ranking 1 5 7 7 7 

TSA 

Average. -3.81E+00 -3.28E+00 -9.97E+00 -1.04E+01 -1.03E+01 

Std. 1.95E-01 8.05E-02 9.22E-01 2.57E-02 9.79E-01 
p-value 6.05E-02 8.35E-24 1.58E-05 1.61E-08 2.56E-07 

Ranking 8 4 3 3 5 

GWO 

Average. -3.86E+00 -3.30E+00 -8.58E+00 -8.91E+00 -9.39E+00 

Std. 2.82E-03 5.47E-02 2.27E+00 2.07E+00 1.88E+00 
p-value 3.54E-16 1.82E-25 1.26E-01 7.83E-03 9.07E-04 

Ranking 4 2 8 8 8 

CGO 

Average. -3.86E+00 -3.29E+00 -9.82E+00 -1.02E+01 -1.05E+01 
Std. 2.71E-15 5.11E-02 1.28E+00 9.63E-01 9.03E-15 

p-value 1.84E-16 2.60E-25 9.62E-05 2.34E-07 1.39E-08 

Ranking 1 3 4 4 1 

http://doi.org/10.24017/science.2025.2.13


 
http://doi.org/10.24017/science.2025.2.13  199 
 
 

Table 11: Ranking score comparison of EMRA, CSA, SCA, SSA, HHO, WOA, PSO, TSA, GWO and CGO by standard bench-
mark functions. 

Algorithm CGO HHO CSA WOA EMRA PSO SSA TSA GWO SCA 

Ranking Score 2.5 3.3 3.7 4.6 5.5  6.3 6.4 6.5 6.7 8.2 

4.7. Evaluating the EMRA in Comparison with others Using CEC2019 Benchmark Functions 
As shown in tables 12 and 13, EMRA demonstrates outstanding performance in F1, where it 

achieves an optimal solution with an average of (1.00E+00), securing the top rank among all algorithms. 
Additionally, EMRA maintains perfect stability in F1 with a zero-standard deviation, proving its con-
sistency in this function. EMRA also shows competitive results in F3 and F6, achieving averages of 
1.37E+01 and 1.34E+01, respectively. Despite ranking lower than the top-performing algorithms, its 
performance in these functions remains consistent with relatively low standard deviations (5.40E-04) 
in F3 and (7.88E-01) in F6. The p-values in these cases indicate that EMRA is statistically comparable to 
some of the best-performing algorithms. In F8, EMRA achieves an average of 7.33E+00, demonstrating 
reliable performance in these functions. Its standard deviation (3.21E-01) indicates a balanced level of 
stability compared to several competing algorithms. 

Regarding consistency, EMRA demonstrates strong consistency in multiple functions, particularly 
F1, F7, and F10, where its standard deviations remain within an acceptable range compared to most 
competing algorithms. EMRA maintains perfect stability in F1, with a zero-standard deviation, proving 
its consistency in this function. In F7, EMRA records a standard deviation of (1.55E+02) which, while 
not the lowest, still allows it to maintain a stable consistency. In F10, EMRA achieves a standard devi-
ation of (1.09E-01), indicating balanced performance. Additionally, while EMRA does not rank at the 
top in F2 and F4, its standard deviations of (3.65E+03) and (5.10E+03) are comparable to some compet-
ing methods, demonstrating its ability to remain within an expected performance range. 

The p-value analysis identified the statistical significance of EMRA between F1 and F10. Specifi-
cally, in F1 with a p-value of 0.00E+00, it validates that EMRA reaches the best solution and is among 
the best-performing algorithms with no statistical difference. Furthermore, in F3 and F6, the p-values 
indicate that EMRA is competitively performing since it reflects consistent results with slight differ-
ences from the best-performing algorithms. For F8, the (1.07E-12) p-value illustrates a significant statis-
tical distinction, reflecting EMRA's high ranking in this function. Similarly, for F10, a p-value of (2.18E-
08) reflects that EMRA's performance is stable and statistically comparable to numerous superior algo-
rithms. While there are functions with lower rankings, such as F5 and F9, their p-values reflect that 
there is room for improvement, i.e., EMRA is able to enhance its performance in these functions. In 
conclusion, the p-value analysis validates that EMRA is statistically significant related to the key bench-
mark functions, enhancing its consistency and reliability in the CEC-2019 tests. 

 
Table 12: Statistical comparison of EMRA and other metaheuristic algorithms by CEC2019 benchmark functions (F1-F5). 

Algorithm 
Function/ 

F1 F2 F3 F4 F5 
Metric 

EMRA 
Average. 1.00E+00 1.60E+04 1.37E+01 1.66E+04 6.46E+00 

Std. 0.00E+00 3.65E+03 5.40E-04 5.10E+03 8.00E-01 

Ranking 1 10 9 9 9 

CSA 

Average. 6.48E+05 1.95E+01 1.37E+01 4.41E+04 9.13E+00 

Std. 6.51E-10 3.61E-15 9.03E-15 2.22E-11 1.81E-15 
p-value 0.00E+00 1.02E-31 5.77E-62 1.10E-36 8.55E-26 

Ranking 5 9 10 10 10 

SCA 

Average. 5.06E+04 1.86E+01 1.37E+01 3.90E+03 3.56E+00 
Std. 5.03E+03 9.55E-02 1.82E-04 1.14E+03 1.28E-01 

p-value 8.58E-52 1.02E-31 1.04E-06 3.12E-19 3.03E-27 
Ranking 3 8 8 8 7 

http://doi.org/10.24017/science.2025.2.13


 
http://doi.org/10.24017/science.2025.2.13  200 
 
Table 12: continue 

SSA 

Average. 1.06E+09 1.83E+01 1.37E+01 3.67E+01 2.25E+00 
Std. 2.17E+09 2.62E-02 4.57E-04 2.14E+01 1.35E-01 

p-value 9.90E-03 1.02E-31 3.96E-05 4.01E-25 1.12E-35 
Ranking 10 4 7 2 3 

HHO 

Average. 5.23E+04 1.84E+01 1.37E+01 2.20E+02 3.59E+00 
Std. 5.07E+03 1.14E-02 6.61E-06 7.14E+01 6.59E-01 

p-value 2.18E-52 1.02E-31 1.50E-08 6.95E-25 8.38E-22 
Ranking 4 6 6 5 8 

WOA 

Average. 7.49E+05 1.83E+01 1.37E+01 4.03E+02 2.86E+00 
Std. 1.89E+06 5.62E-03 8.32E-07 4.76E+02 4.56E-01 

p-value 3.39E-02 1.02E-31 1.05E-08 1.63E-24 3.44E-29 
Ranking 6 5 4 6 5 

 
Table 13: Statistical comparison of EMRA and other metaheuristic algorithms by CEC2019 benchmark functions (F6-F10). 

Algorithm 
Function/ 

F6 F7 F8 F9 F10 
Metric 

EMRA 

Average. 1.34E+01 1.20E+03 7.33E+00 2.50E+03 2.18E+01 
Std. 7.88E-01 1.55E+02 3.21E-01 7.04E+02 1.09E-01 

Ranking 10 9 9 9 9 

CSA 

Average. 1.27E+01 2.16E+03 7.99E+00 4.71E+03 2.19E+01 
Std. 8.61E-01 1.66E+02 2.36E-01 1.85E-12 3.88E-02 

p-value 2.09E-03 6.45E-31 1.07E-12 1.76E-24 2.18E-08 
Ranking 9 10 10 10 10 

SCA 

Average. 1.22E+01 8.61E+02 5.99E+00 3.11E+02 2.14E+01 
Std. 5.90E-01 1.89E+02 4.24E-01 1.21E+02 2.64E-01 

p-value 3.82E-09 2.76E-10 6.53E-20 6.83E-24 2.13E-08 
Ranking 8 8 5 8 7 

SSA 

Average. 6.10E+00 3.53E+02 5.49E+00 3.61E+00 2.10E+01 
Std. 1.74E+00 2.07E+02 7.35E-01 1.77E-01 1.03E-01 

p-value 8.59E-29 2.22E-25 3.68E-18 5.02E-27 1.26E-34 
Ranking 1 3 4 3 2 

HHO 

Average. 1.07E+01 5.30E+02 6.16E+00 4.30E+00 2.13E+01 
Std. 1.01E+00 1.71E+02 3.47E-01 4.06E-01 1.27E-01 

p-value 6.22E-17 9.01E-23 1.60E-19 5.09E-27 2.57E-23 
Ranking 3 5 7 4 4 

WOA 

Average. 1.06E+01 6.16E+02 6.10E+00 6.23E+00 2.13E+01 
Std. 1.26E+00 2.95E+02 6.28E-01 2.03E+00 1.63E-01 

p-value 7.34E-15 1.34E-13 1.65E-13 5.29E-27 5.50E-19 
Ranking 2 7 6 5 5 

PSO 

Average. 7.81E+08 1.83E+01 1.37E+01 2.39E+01 2.14E+00 
Std. 1.42E+09 3.61E-15 9.03E-15 1.32E+01 9.18E-02 

p-value 3.80E-03 1.02E-31 1.03E-08 3.86E-25 1.70E-36 
Ranking 8 1 1 1 2 

TSA 

Average. 9.79E+08 1.85E+01 1.37E+01 1.21E+03 3.15E+00 
Std. 3.38E+09 1.30E-01 9.49E-07 1.16E+03 5.96E-01 

p-value 1.18E-01 1.02E-31 1.06E-08 4.78E-23 1.44E-25 
Ranking 9 7 5 7 6 

GWO 

Average. 2.74E+07 1.83E+01 1.37E+01 1.43E+02 2.55E+00 
Std. 6.64E+07 5.42E-04 5.36E-07 4.42E+02 2.69E-01 

p-value 2.78E-02 1.02E-31 1.04E-08 6.60E-25 4.96E-33 
Ranking 7 3 3 4 4 

CGO 

Average. 3.38E+04 1.83E+01 1.37E+01 3.86E+01 2.13E+00 
Std. 1.70E+03 3.61E-15 9.03E-15 2.21E+01 8.37E-02 

p-value 8.67E-69 1.02E-31 1.03E-08 4.03E-25 1.51E-36 
Ranking 2 1 1 3 1 
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Table 13: continue 

PSO 

Average. 1.10E+01 1.63E+02 4.68E+00 3.39E+00 2.01E+01 
Std. 1.48E+00 1.60E+02 1.18E+00 2.76E-02 4.87E+00 

p-value 7.29E-11 3.10E-33 4.16E-17 4.99E-27 5.99E-02 
Ranking 5 1 2 2 1 

TSA 

Average. 1.10E+01 5.78E+02 6.28E+00 1.19E+01 2.14E+01 
Std. 1.16E+00 2.26E+02 6.17E-01 1.17E+01 1.44E-01 

p-value 1.16E-13 5.26E-18 2.75E-11 5.98E-27 5.16E-16 
Ranking 4 6 8 6 6 

GWO 

Average. 1.19E+01 4.61E+02 4.82E+00 1.31E+01 2.15E+01 
Std. 9.01E-01 2.53E+02 1.00E+00 4.15E+01 1.29E-01 

p-value 2.72E-09 9.64E-20 7.16E-19 6.63E-27 4.84E-13 
Ranking 7 4 3 7 8 

CGO 

Average. 1.11E+01 2.36E+02 3.75E+00 3.34E+00 2.11E+01 
Std. 7.00E-01 2.58E+02 1.43E+00 3.20E-03 9.37E-02 

p-value 3.88E-17 7.27E-25 2.04E-19 4.99E-27 1.07E-33 
Ranking 6 2 1 1 3 

 
Using the Friedman mean ranking score on the 10 CEC2019 benchmark functions, as presented in 

table 14, EMRA scored 8.4, indicating moderate performance. While it showed strength in specific cases, 
CGO 2.1 and PSO 2.4 achieved the top ranks, reflecting greater consistency. SSA also performed well 
with a score of 3.9, whereas CSA had the weakest performance with a score of 9.3. These results high-
light that EMRA was competitive in some functions, especially Function 1 where it achieved the opti-
mal value, but it was outperformed by the most robust algorithms across the suite. 

 
Table 14: Comparison of the ranking scores of EMRA with different metaheuristics on CEC2019. 

 

4.8. Applying EMRA to Deal with Engineering Design Challenges  
This section mainly focuses on evaluating how well EMRA performs in real world problems. To 

do this, three classic engineering-design problems were used: (welded beam, pressure vessel, and ten-
sion spring designs). A brief theoretical overview of each issue is presented. EMRA's performance was 
evaluated against various existing algorithms, including MRA, CSA, HHO, WOA, and TSA. This com-
parison aims to illustrate EMRA's capability and competitiveness in handling complicated design op-
timization challenges. The methodology provides the average and standard deviations obtained after 
running the selected algorithm 30 times on the problems. 

4.8.1. Welded Beam Design 
In this problem, the main objective is to reduce the total construction cost of a welded-beam struc-

ture that is subject to a variety of physical and manufacturing constraints, as shown in the welded beam 
design diagram in figure 3. The welded thickness(h), beam length (l), depth (b), and height of bar (t) 
are the decision variables. Shear stress, bending stress, deflection, and construction feasibility are the 
criteria used to establish the constraints. 
Assume:   𝑤𝑤��⃗  = [𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4] = [ℎ 𝑙𝑙 𝑡𝑡 𝑏𝑏] 
 
Objective function:  𝑓𝑓

𝑤𝑤
→ = 1.10471𝑤𝑤12𝑤𝑤2 + 0.04811𝑤𝑤3𝑤𝑤4(14.0 + 𝑤𝑤2)          (11) 

 
The design must satisfy the following constraints: 
𝑔𝑔1(𝑤𝑤) = 𝜏𝜏(𝑤𝑤) − 13,600 ≤ 0 
𝑔𝑔2(𝑤𝑤) = 𝜎𝜎(𝑤𝑤) − 30,000 ≤ 0 
𝑔𝑔3(𝑤𝑤��⃗ ) = 𝛿𝛿(𝑤𝑤) − 0.25 ≤ 0 
𝑔𝑔4(𝑤𝑤) = 𝑤𝑤 −𝑤𝑤4  ≤ 0 
𝑔𝑔5(𝑤𝑤��⃗ ) = 600 − 𝑤𝑤4  ≤ 0 

Algorithm CGO HHO CSA WOA EMRA PSO SSA TSA GWO SCA 

Ranking Score 2.1 2.4 3.9 5 5.1 5.2 6.4 7 8.4  9.3 
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The variable bounds are given as: 0.1 ≤  𝑤𝑤1  ≤ 2, 0.1 ≤  𝑤𝑤2  ≤ 10, 0.1 ≤  𝑤𝑤3  ≤ 10, 0.1 ≤  𝑤𝑤4  ≤ 2 
 
 

 
 

4.8.2. Pressure Vessel Design 
The pressure vessel design’s challenge to optimize the manufacturing cost of a cylindrical pressure 

vessel. The cost function considers the material, forming, and welding expenses. The design parameters 
are the shell thickness (Ts), head thickness (Th), inner radius (R), and length of the cylindrical part (L) 
excluding the head itself. Figure 4 shows the problem variables that are suitable for optimization. The 
problem variables, equation, and constraints are displayed below.  

Assume:   𝑝𝑝 = [𝑝𝑝1 𝑝𝑝2 𝑝𝑝3 𝑝𝑝4] = [𝑇𝑇𝑠𝑠 𝑇𝑇ℎ 𝑅𝑅 𝐿𝐿] 
Objective function: 𝑓𝑓

𝑝𝑝
→ = 0.6224𝑝𝑝1𝑝𝑝3 𝑝𝑝4+1.778𝑝𝑝2𝑝𝑝32+3.1661𝑝𝑝12𝑝𝑝4+19.84𝑝𝑝12𝑝𝑝3   (12)  

The design must satisfy the following constraints: 
𝑔𝑔1(𝑝𝑝) = −𝑝𝑝1 + 0.0193𝑝𝑝3  ≤ 0 
𝑔𝑔2(𝑝𝑝) = −𝑝𝑝3 + 0.0095𝑝𝑝3  ≤ 0 

𝑔𝑔3(𝑝𝑝) = −𝜋𝜋𝑝𝑝32𝑝𝑝4 −
4
3
𝜋𝜋𝑝𝑝33 + 1,296,000 ≤ 0 

𝑔𝑔4(𝑝𝑝) = 𝑝𝑝4 − 240 ≤ 0 
The variable bounds are given as: 0 ≤  𝑝𝑝1  ≤ 99,   0 ≤  𝑝𝑝2  ≤ 99,   10 ≤  𝑝𝑝3  ≤ 200,  10 ≤  𝑝𝑝4  ≤ 200 

 
Figure 4: Pressure vessel design. 

4.8.3. Tension Spring Design  
The goal of the present application is to reduce the size or weight of a compression spring while 

continuing to meet the mechanical and geometric constraints on it, such as the limits for shear stress, 
deflection, and surge frequency. Figure 5 highlights the variables of the problem that are suitable for 
optimization. 
Assume:   𝑡𝑡 = [𝑡𝑡1 𝑡𝑡2 𝑡𝑡3 ] = [𝑑𝑑 𝐷𝐷 𝐿𝐿] 

Figure 3: Welded Beam Design. 
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Objective function: 𝑓𝑓(𝑡𝑡) = (2 + 𝑡𝑡3)𝑡𝑡12𝑡𝑡2  (13) 
The design must satisfy the following constraints: 

𝑔𝑔1�𝑡𝑡� = 1 −
𝑡𝑡23𝑡𝑡3

71785𝑡𝑡14
 ≤ 0 

𝑔𝑔2�𝑡𝑡� =
4𝑡𝑡22−𝑡𝑡1𝑡𝑡2
71785𝑡𝑡14

+
1

5108𝑡𝑡12
 ≤ 0 

𝑔𝑔3�𝑡𝑡� = 1 −
140.45𝑡𝑡1
𝑡𝑡22𝑡𝑡3

 ≤ 0 

𝑔𝑔4�𝑡𝑡� =
𝑡𝑡1 + 𝑡𝑡2

1.5
− 1 ≤ 0 

The variable bounds are given as: 0.05 ≤ 𝑡𝑡1 ≤ 2.00, 0.25 ≤ 𝑡𝑡2 ≤ 1.30, 2.00 ≤ 𝑡𝑡3 ≤ 15.00. 

 
Figure 5: Tension Spring Design  

4.8.4. Comparative Analysis of EMRA and MRA Through Three Engineering Applications  
Comparative analysis was conducted to evaluate the performance of the proposed EMRA against 

the original version, MRA, using three established engineering design problems: pressure vessel de-
sign, welded beam design, and tension / compression spring design. The average performance data 
presented in table 15 demonstrates that EMRA generally exhibits more stable performance compared 
to the original MRA across the three evaluated engineering design problems. In the welded beam de-
sign, EMRA attains a lower average cost of (1.89E+00), in contrast to MRA's (2.05E+00), indicating a 
more efficient design with lower construction costs. In the tension spring design, EMRA obtains a 
slightly better average value of (1.32E-02), marginally lower than MRA’s (1.33E-02), indicating im-
proved optimization accuracy. However, in the pressure vessel design, the outcomes indicate an agree-
ment. MRA achieves a better average cost of (7.77E+03) in comparison with EMRA's (9.81E+03). In terms 
of standard deviations, EMRA performs more consistently in two of the three cases. For the welded 
beam design, EMRA shows a notably smaller standard deviation of (2.34E-01) compared to MRA’s 
(5.31E-01), indicating more consistent outcomes across multiple runs. In the tension spring design, 
EMRA also maintains a lower standard deviation of (9.74E-05), while MRA records a significantly 
higher value of (5.66E-04), confirming EMRA’s superior repeatability. Conversely, in the pressure ves-
sel design, MRA demonstrates greater stability, with a lower standard deviation of (9.51E+02), com-
pared to EMRA’s (2.11E+03). Overall, EMRA delivers better or comparable average solutions in two of 
the three cases and consistently yields lower standard deviations in most applications. These findings 
suggest that EMRA is a more reliable and robust optimization algorithm when applied to constrained 
engineering design problems. 
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 Table 15: Performance of EMRA against the original MRA in three engineering applications. 

 

4.8.5. Comparative Analysis of EMRA, CSA, HHO, WOA, and TSA in Engineering Applications  
A comparison analysis was conducted to evaluate the performance of the proposed EMRA com-

pared to four recognized metaheuristic algorithms, CSA, HHO, WOA, and TSA, which were selected 
for their demonstrated productivity in addressing complex optimization challenges. The evaluation 
was performed using three established engineering design requirements to assess EMRA's efficiency, 
robustness, consistency, and the ranking was recognized based on the average performance of each 
algorithm. Additionally, it provided a comparative measure of their effectiveness in solving the opti-
mization tasks. 

The outcomes are shown in table 16. In terms of average performance, EMRA performs very com-
petitively across all three engineering design problems. In the welded beam design, EMRA achieves an 
average cost of (1.89E+00), which ranks first among the algorithms. In the pressure vessel design, EMRA 
has an average value of (9.81E+03), which places it in fourth place, behind CGO, GWO, and SCA. How-
ever, EMRA excels in the tension spring design, with an average of (1.32E-02), securing the first posi-
tion, outperforming all other algorithms. 

In terms of standard deviations, which reflect the consistency of the optimization results, EMRA 
exhibits strong stability across the three engineering problems. For the welded beam design, EMRA has 
a standard deviation of (2.34E-01), the lowest among the algorithms, indicating the most consistent 
performance. In the pressure vessel design, EMRA again shows competitive consistency with a stand-
ard deviation of (2.11E+03), which is better than many of the algorithms, including CSA (4.06E+03) and 
WOA (2.85E+03). For the tension spring design, EMRA records an impressive standard deviation of 
(9.74E-05) which is also the lowest, showcasing its highly reliable convergence compared to other algo-
rithms like CSA (8.71E+07) and TSA (1.36E-03). Overall, EMRA exhibits competitive performance in 
every scenario, providing great performance and exceptional consistency, particularly in the tension 
spring design where it outperforms in terms of stability and average performance. 

Table 16: Performance of EMRA with CSA, HHO, WOA and TSA in three engineering applications. 
 

Algorithm 
Engineering Applications Design 

Welded Beam Pressure Vessel Tension Spring 
Avg Std. Rank Avg. Std. Rank Avg. Std. Rank 

EMRA 1.89E+00 2.34E-01 1 9.81E+03 2.11E+03 4 1.32E-02 9.74E-05 1 
CSA 1.92E+00 4.42E-01 3 7.66E+03 4.06E+03 2 1.62E+07 8.71E+07 5 
HHO 1.90E+00 4.01E-01 2 6.72E+03 4.37E+02 1 1.40E-02 1.20E-03 3 
WOA 2.54E+00 8.47E-01 4 9.58E+03 2.85E+03 3 1.38E-02 1.16E-03 2 
TSA 1.17E+07 6.02E+07 5 1.58E+04 8.42E+03 5 1.40E-02 1.36E-03 4 

5. Discussion  
This section analyzes the efficiency and stability of the proposed EMRA by examining its 

performance over 23 standard benchmark functions, as well as 10 CEC2019 competition benchmark 
functions. These benchmark functions are widely used by researchers to assess the performance of 
newly created algorithms in a standard manner across the variety of methods [2]. These functions are 
also used as benchmarks to evaluate how optimization algorithms perform across different problem 
types. They include complex features like rotation, scaling, and shifting to better simulate real-world 
optimization challenges [41].  

For these three sets of standard benchmark functions, unimodal functions with one global optimal 
solution and those without a local optimal solution were determined to be suitable for the evaluation 

Engineering App. Design 
EMRA MRA 

Average           Std.            Average Std. 
Welded Beam 1.89E+00 2.34E-01 2.05E+00 5.31E-01 

Pressure Vessel 9.81E+03 2.11E+03 7.77E+03 9.51E+02 
Tension Spring 1.32E-02 9.74E-05 1.33E-02 5.66E-04 
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of an algorithm’s exploiting ability. Multimodal functions are a popular choice for exploration-
oriented optimization problems as they provide a useful benchmark for evaluating an algorithm's 
capacity for dealing with a landscape with many peaks and valleys to reach the global optimum. Fixed-
dimension multimodal functions with multiple local solutions play a key role in evaluating an 
algorithm’s ability of escaping from local optima to optimally seek the global optimum [42]. They have 
been widely utilized to benchmark the performance and robustness of optimization algorithms, which 
is beneficial for comparisons between EMRA and other algorithms [43]. To rank the performance of the 
algorithms across the 23 standard benchmark functions, we applied the Friedman Mean ranking 
method [44], which evaluates overall performance consistency where lower scores reflect better out-
comes. 

The CEC2019 benchmark functions are widely used to test optimization algorithms because 
they’re complex and mimic real-world challenges. These benchmarks cover different types of functions 
(unimodal, multimodal, hybrid, and composition), helping to assess an algorithm’s ability to both ex-
plore new solutions and make the most of what it already knows, striking the right balance between 
the two. Overall, they offer a fair way to compare algorithms and reflect real-world optimization prob-
lems [45]. Also, to systematically evaluate the effectiveness of different algorithms, we utilized ranking 
metrics based on its performance across multiple benchmark functions using the Friedman Mean Rank 
method [44]. The rankings reflect each algorithm's ability to consistently approach optimal solutions.  

5.1. EMRA vs. MRA 
The results from testing EMRA against MRA in the 23 standard benchmark functions indicate that 

EMRA significantly enhances the algorithm’s ability to balance exploration and exploitation. EMRA is 
comparable to MRA in terms of unimodal functions; however, it surpasses it in terms of both average 
performance and consistency in some functions. It shows superior performance in multimodal and 
fixed-dimension multimodal functions, achieving better average fitness values and lower standard de-
viations. This demonstrates EMRA’s improved capacity to avoid local optima through effective explo-
ration, as well as more precise solution refinement through stronger exploitation. Nevertheless, some 
benchmark functions reveal areas where EMRA’s performance could be further enhanced, suggesting 
the potential benefits of incorporating adaptive parameter strategies and diversity maintenance mech-
anisms. In summary, EMRA provides a more robust and reliable optimization framework compared to 
the original MRA, particularly for complex and high-dimensional problems. 

The comparison shows that EMRA performs well in comparison with MRA in the CEC2019 bench-
mark functions, especially for complex optimization problems. EMRA overall achieved better perfor-
mance compared to MRA in 6 of the 10 functions, especially in functions (F3, F4, F5, F7, F8, and F9), 
which demonstrated its ability to explore complex search spaces, escape local optimum solutions, and 
quickly converge on global minimum solutions. Moreover, EMRA resulted in improved stability for 8 
functions and significantly lower standard deviations, demonstrating the robustness and efficiency of 
EMRA over multiple runs. Note that EMRA also has matched the best results solved by the original 
MRA in function F1, indicating that it does preserve some superiority from the original and further 
enhances its capability to handle more challenging optimization problems. 

5.2. EMRA vs Other Metaheuristics 
The results indicate that EMRA is competitive with other popular metaheuristic algorithms re-

garding the 23 standard benchmark functions and CEC2019 benchmark functions. In the 23-function 
test suite, EMRA performs well in both unimodal and multimodal benchmarks and takes the first place 
in F1–F4 and F7, with high stability and small standard deviations. Compared with CSA, SCA, SSA, 
EMRA is competitive with the best performing values in F9, F10, and F11, with stable and accurate 
results. For some functions like F8, EMRA is slightly dominated by algorithms such as CSA and HHO, 
which means that EMRA is also competitive in multimodal landscapes. EMRA shows better stability 
and accuracy in many functions, while it obtained a low rank for a few fixed-dimension multimodal 
functions (F14–F23), which implies that there is space for high complexity with stronger handling ca-
pability. 
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The performance of various algorithms was systematically ranked across 10 CEC 2019 benchmark 
functions (F1–F10). EMRA displayed notable strength for F1, achieving the highest-ranking position. 
However, EMRA demonstrated comparatively lower rankings in the remaining functions, mostly oc-
cupying ranks between 9th and 10th. Algorithms such as PSO and CGO consistently showed superior 
rankings across multiple functions, frequently securing the top positions. Conversely, algorithms like 
CSA generally held lower positions, indicating weaker overall effectiveness in the benchmark tests. 
These results illustrate EMRA’s competitive capability in specific problems such as F1 but they also 
highlight areas where further refinement could improve its consistency across a wider variety of chal-
lenging optimization scenarios. 

5.3. Engineering Applications in EMRA 
The three benchmark problems of the welded beam, pressure vessel and tension spring design 

problems have been extensively used as the standard comparison benchmarks in the structural optimi-
zation literature. The welded beam problem [46] is a problem which contains multiple stresses, deflec-
tion and construction constraints. The pressure vessel problem is to minimize the cost of manufacture 
with stress and thickness constraints [3]. The tension spring problem, where the weight is to be mini-
mized subject to constraints on shear stress, surge frequency and deflection. The spring is classified by 
three design parameters: wire diameter, mean coil diameter, and number of active coils [47]. These 
design problems illustrate practical scenarios in structural and mechanical engineering, each character-
ized by distinct objective functions, design variables, and sets of constraints [48], characterized by nu-
merous constraints, and significant real-world importance [9].  

Although EMRA delivers enhanced results compared to MRA across several engineering optimi-
zation problems, both algorithms still face difficulties in certain scenarios. For instance, in the pressure 
vessel design problem, MRA achieves a better average objective value, but EMRA exhibits greater var-
iability, indicating variation in its search process. This reflects the complexity of handling non-linear 
constraints and multiple variables in such problems, where neither algorithm fully excels at all types of 
problem. Furthermore, while EMRA shows superior performance in the welded beam and tension 
spring problems, variations in solution quality designate the potential to improve the algorithm's con-
vergence stability. These results highlight the requirement for the further fine-tuning of EMRA’s pa-
rameters, potentially integrating hybrid methods to support its robustness and reliability when applied 
to diverse and challenging engineering design tasks. 

The results demonstrate that EMRA is competitive compared to other meta-heuristic algorithms 
in engineering problems. It achieved the lowest average and highest stability, better than all compared 
algorithms, for the welded beam and tension spring problems. For the pressure vessel problem, EMRA 
ranked fourth yet demonstrated better consistency than many of the other methods. In general, EMRA 
showed powerful optimization ability and stability and was far superior to CSA, WOA, TSA, and even 
HHO in the solution of two out of the three real-world engineering design problems. 

6. Conclusions 
This study proposed the EMRA, an improved version of the original MRA, with a focus on better 

balancing the exploration and exploitation phases and preventing early convergence to local optima. 
EMRA was tested on 23 standard benchmark functions and 10 CEC2019 test functions, and its perfor-
mance was compared with several well-known algorithms including (CSA, SCA, SSA, HHO, WOA, 
PSO, TSA, GWO, and CGO). The results showed that EMRA outperformed MRA in several cases, 
achieving optimal results in six standard functions, particularly in fixed-dimension multimodal bench-
marks. It also performed better in six of the CEC2019 functions, and reached the optimum in one. Com-
pared to other algorithms, EMRA showed consistent performance with lower standard deviations, in-
dicating better stability and reliability. Additionally, EMRA was successfully applied to real-world en-
gineering design problems such as (welded beam, pressure vessel, and tension spring design). In these 
tasks, EMRA ranked first in both the welded beam and tension spring problems, demonstrating its 
practical value. In conclusion, EMRA presents a promising and reliable optimization technique that 
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improves upon its predecessor and performs competitively with other advanced metaheuristic algo-
rithms in both benchmark and real-world scenarios. 

Although EMRA has shown promising improvements over the original MRA, there are still sev-
eral areas worth exploring. One key direction is the development of an adaptive parameter control 
mechanism, especially for transition factor (K), to better balance exploration and exploitation based on 
the algorithm’s progress. This could enhance convergence speed and solution quality. Another im-
portant goal is to reduce EMRA’s computational cost. Improving its efficiency would allow the algo-
rithm to scale to large, complex problems and support real-time applications where quick decisions are 
needed. Expanding the application of EMRA to the medical field such as in medical image processing, 
disease diagnosis, and treatment planning offers a promising opportunity to demonstrate its versatility 
and real-world value. Future research should also test EMRA on high-dimensional, nonlinear, and 
multi-objective problems in these domains. Lastly, improving the population diversity control mecha-
nisms is essential to avoid premature convergence and ensure the broad exploration of the search space, 
leading to more robust and reliable solutions. 
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Appendix A 

In this section, Tables A1 to A4 shows the mathematical expressions of the 23 widely recognized 
standard benchmark functions and CEC2019 set which employed and used to evaluate in this research. 
These tables offer an in-depth summary of the function equations, their dimensionality, specified upper 
and lower limit bounds, as well as their respective minimum target values. This detailed compilation 
forms the essential basis for assessing the effectiveness of the algorithms evaluated in the study [2, 41-
43]. 

Table A1: Unimodal standard benchmark functions [2, 42]. 

 
Table A2: Multimodal standard benchmark functions [2, 42] 

Functions Formula Dimension (n) Range 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 
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� + 20 

+  𝑒𝑒 
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𝐹𝐹11(𝑥𝑥) =
1

4000
�𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

−� cos�
𝑥𝑥𝑖𝑖
√𝑖𝑖
� + 1

𝑛𝑛

𝑖𝑖=1

 

 
30 [-600, 600] 0 

𝐹𝐹12(𝑥𝑥) =
𝜋𝜋
𝑛𝑛 �

10 sin(𝜋𝜋𝑦𝑦1)

+ �(𝑦𝑦𝑖𝑖 − 1)2[1 + 10 sin(𝜋𝜋𝑦𝑦𝑖𝑖+1)2]
𝑛𝑛−1

𝑖𝑖=1

+ (𝑦𝑦𝑛𝑛 − 1)2� +�𝜇𝜇(𝑥𝑥𝑖𝑖 , 10,100,4),  𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 1 +
𝑥𝑥 + 1

4
,𝜇𝜇(𝑥𝑥𝑖𝑖 ,𝑎𝑎, 𝑘𝑘,𝑚𝑚)

= �
𝑘𝑘(𝑥𝑥𝑖𝑖 − 𝑎𝑎)𝑚𝑚𝑥𝑥𝑖𝑖 > 𝑎𝑎

0− 𝑎𝑎 < 𝑥𝑥𝑖𝑖 < 𝑎𝑎
𝑘𝑘(−𝑥𝑥𝑖𝑖 − 𝑎𝑎)𝑚𝑚𝑥𝑥𝑖𝑖 < −𝑎𝑎
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Table A3: Fixed-dimension Multimodal standard benchmark functions [2, 42] 

 
Table A4: CEC2019 benchmark functions [7, 41]. 

 

𝐹𝐹13(𝑥𝑥) =  0.1 �sin(3𝜋𝜋𝑥𝑥1)2

+ �(𝑥𝑥𝑖𝑖 − 1)2[1 + sin(3𝜋𝜋𝑥𝑥𝑖𝑖 + 1)2]
𝑛𝑛

𝑖𝑖=1

+ (𝑥𝑥𝑛𝑛 − 1)2 [sin(2𝜋𝜋𝑥𝑥𝑛𝑛)2]�

+ �𝜇𝜇
𝑛𝑛

𝑖𝑖=1

(𝑥𝑥𝑖𝑖, 5, 100, 4) 

 

30 [-50, 50] 0 

Functions Formula Dimension (n) Range 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎  

𝐹𝐹14(𝑥𝑥) =  �
1

500
+�

1
𝑗𝑗 +∑ (𝑥𝑥𝑖𝑖 − 𝑎𝑎𝑖𝑖𝑖𝑖)62

𝑖𝑖=1

25

𝑗𝑗=1

� 2 [-65.536, 65.536] 1 

𝐹𝐹15(𝑥𝑥) =  ��𝑎𝑎𝑖𝑖 +
𝑥𝑥1�𝑏𝑏𝑖𝑖2+𝑏𝑏𝑖𝑖𝑥𝑥2�

𝑏𝑏𝑖𝑖2 + 𝑏𝑏𝑖𝑖𝑥𝑥3 + 𝑥𝑥4
�

11

𝑖𝑖=1

 4 [-5, 5] 0.00030 

𝐹𝐹16(𝑥𝑥) =  4 𝑥𝑥12 − 2.1 𝑥𝑥14 + 
1
3
𝑥𝑥16 + 𝑥𝑥1𝑥𝑥2 −  4 𝑥𝑥22 +  4 𝑥𝑥24 2 [-5, 5] -1.0316 

𝐹𝐹17(𝑥𝑥) = �𝑥𝑥2 −
5.1
4𝜋𝜋2

𝑥𝑥12 +
5
𝜋𝜋
𝑥𝑥1 − 6�

2

+ 10 �1−
1

8𝜋𝜋
� cos𝑥𝑥1 + 10 2 [-5, 5] 0.398 

𝐹𝐹18(𝑥𝑥) = [1 + (𝑥𝑥1 + 𝑥𝑥2 + 1)2(19− 14𝑥𝑥1 + 3𝑥𝑥12 + 14𝑥𝑥2 + 6𝑥𝑥1𝑥𝑥2
+ 3𝑥𝑥22)]
× [30
+ (2𝑥𝑥1 − 3𝑥𝑥2)2

× (18 − 32𝑥𝑥1 + 12𝑥𝑥12 + 48𝑥𝑥2 − 36𝑥𝑥1𝑥𝑥2
+ 27𝑥𝑥22)] 

2 [-2, 2] 3 

𝐹𝐹19(𝑥𝑥) =  −�𝑐𝑐𝑖𝑖

4

𝑖𝑖=1

𝑒𝑒𝑒𝑒𝑒𝑒�−�𝑎𝑎𝑖𝑖𝑖𝑖�𝑥𝑥𝑗𝑗 − 𝑝𝑝𝑖𝑖𝑖𝑖�
2

3

𝑗𝑗=1

� 3 [0, 1] -3.86 

𝐹𝐹20(𝑥𝑥) =  −�𝑐𝑐𝑖𝑖

4

𝑖𝑖=1

𝑒𝑒𝑒𝑒𝑒𝑒�−�𝑎𝑎𝑖𝑖𝑖𝑖�𝑥𝑥𝑗𝑗 − 𝑝𝑝𝑖𝑖𝑖𝑖�
2

6

𝑗𝑗=1

� 6 [0, 1] -3.32 

𝐹𝐹21(𝑥𝑥) =  −�[(𝑋𝑋 − 𝑎𝑎𝑖𝑖)(𝑋𝑋 − 𝑎𝑎𝑖𝑖)𝑇𝑇 + 𝐶𝐶𝑖𝑖]−1
5

𝑖𝑖=1

 4 [0, 10] -10.1532 

𝐹𝐹22(𝑥𝑥) =  −�[(𝑋𝑋 − 𝑎𝑎𝑖𝑖)(𝑋𝑋 − 𝑎𝑎𝑖𝑖)𝑇𝑇 + 𝐶𝐶𝑖𝑖]−1
7

𝑖𝑖=1

 4 [0, 10] -10.4028 

𝐹𝐹23(𝑥𝑥) =  −� 0[(𝑋𝑋 − 𝑎𝑎𝑖𝑖)(𝑋𝑋 − 𝑎𝑎𝑖𝑖)𝑇𝑇 + 𝐶𝐶𝑖𝑖]−1
10

𝑖𝑖=1

 4 [0, 10] -10.5363 

CEC Functions  Dimension (n) Range 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎  
01 Storn’s Chebyshev polynomial fitting problem 9 [–8192, 8192] 1 
02 Inverse Hilbert matrix problem 16 [–16384, 16384] 1 

03 Lennard–Jones minimum energy             cluster 18 [–4, 4] 1 
04 Rastrigin’s function 10 [–100, 100] 1 

05 Griewangk’s function 10 [–100, 100] 1 
06 Weierstrass function 10 [–100, 100] 1 

07 Modified Schwefel’s function 10 [–100, 100] 1 
08 Expanded Schaffer’s F6 function 10 [–100, 100] 1 

09 Happy Cat function 10 [–100, 100] 1 
10 Ackley function 10 [–100, 100] 1 
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