

 Kurdistan Journal of Applied Research (KJAR)

Print-ISSN: 2411-7684 | Electronic-ISSN: 2411-7706

KJAR. June 2025, volume 10, issue 1 kjar.spu.edu.iq

1. Introduction

The internet service industry, encompassing areas like cloud computing, represents a rapidly
evolving model for large-scale infrastructure [1]. Cloud computing has emerged as a transformative
force across multiple industries, fundamentally changing how businesses manage and process data [2].
The cloud computing model and its distribution architecture are built upon the Internet. Its main goal
is to store sensitive information quickly and securely. Cloud computing enables global access to a cen-
tralized collection of resources, including servers, storage, networks, services, and applications, via the
Internet from any location in the world [3].

There are risks associated with cloud computing. Despite many organizations already storing sen-
sitive information in the cloud, large companies are hesitant to migrate due to security concerns [4].
The rapid growth of sensitive data stored on cloud platforms has significantly heightened its

Original Article

A Hybrid Approach to Cloud Data Security Using
ChaCha20 and ECDH for Secure Encryption and Key
Exchange

Rebwar Khalid Muhammed a* , Zryan Najat Rashid b , Shaida Jumaah Saydah c

a Department of Network, Computer Science Institute, Sulaimani Polytechnic University, Sulaymaniyah, Iraq.
b Department of Computer Network, Technical College of Informatics, Sulaimani Polytechnic University, Sulaymaniyah, Iraq.
c Ministry of Education, Kirkuk Education Department of Kurdish Studies, Hawazen Preparatory School for Girls, Kirkuk, Iraq.

Submitted: 27 November2024
Revised: 7 February 2025
Accepted: 6 March 2025

* Corresponding Author:
rebwar.khalid@spu.edu.iq

Keywords: Cloud Computing,
Data Security, ChaCha20 En-
cryption, Elliptic Curve Diffie-
Hellman (ECDH), Key Transfer

How to cite this paper: R. K.
Muhammed, Z. N. Rashid, S. J.
Sadyah, “A Hybrid Approach
to Cloud Data Security Using
ChaCha20 and ECDH for Se-
cure Encryption and Key Ex-
change”, KJAR, vol. 10, no. 1,
pp: 66-82, June 2025, doi:
10.24017/science.2025.1.5

Copyright: © 2025 by the au-
thors. This article is an open ac-
cess article distributed under
the terms and conditions of the
Creative Commons Attribution
(CC BY-NC-ND 4.0)

Abstract: Cloud computing has transformed data storage and processing by of-
fering on-demand resources and global accessibility. However, this convenience
introduces significant security risks due to the reliance on third-party services,
raising concerns about data confidentiality and integrity. This research proposes
a hybrid encryption model that combines the high-speed ChaCha20 algorithm
for data encryption with the Elliptic Curve Diffie-Hellman (ECDH) protocol for
secure key exchange. The model ensures robust data protection in Cloud envi-
ronments by generating a ChaCha20 key, encrypting it with ECDH, and securely
storing encrypted key fragments in the cloud for later reassembly and decryp-
tion. This approach enhances security during data transmission and storage
while mitigating the common vulnerabilities found in single-algorithm solu-
tions. The study evaluates and compares the performance of ChaCha20 with
ECDH against Rivest-Shamir-Adleman (RSA) with advanced encryption stand-
ard (AES) and Blowfish with Elliptic-Curve Cryptography (ECC). The results
show that ChaCha20 with ECDH provides the fastest encryption time of 2ms
and a key generation time of 15.8ms, with moderate memory usage. By contrast,
RSA with AES is slower but offers consistent memory usage, while Blowfish
with ECC balances speed and memory efficiency. The proposed hybrid model
outperforms traditional encryption methods in both speed and security, making
it suitable for modern cloud applications requiring scalability and high perfor-
mance. Future research could focus on optimizing this model for resource-con-
strained environments, such as IoT and mobile.

https://kjar.spu.edu.iq/
https://doi.org/10.24017/science.2025.1.5
https://doi.org/10.24017/science.2025.1.5
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0009-0009-3288-7340
https://orcid.org/0000-0003-3479-5510
https://orcid.org/0000-0002-2884-004X
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.24017/science.2025.1.5&domain=pdf&date_stamp=2025-03-10

http://doi.org/10.24017/science.2025.1.5 67

vulnerability to security breaches [5]. Therefore, the main issue with storage in cloud services is data
security. To safeguard sensitive data, users should encrypt their data before sending it to cloud storage
and implement access control mechanisms using cryptographic methods. There are various techniques
available to secure data, with cryptographic algorithms being particularly effective [6]. Recently, nu-
merous cloud computing encryption techniques are being researched in both industrial and academic
fields. Additionally, securing files in the cloud and safeguarding private information is a crucial task.
Preserving privacy is the method used to protect private information in the cloud. To achieve this,
various security approaches are employed, including key generation, encryption, and decryption. Con-
sequently, various privacy preservation methods have been utilized in existing research to protect sen-
sitive data [7].

The most important technique for ensuring confidentiality and the accessibility of information for
those who receive it while protecting it from attackers is the use of encryption. Cryptographic tech-
niques additionally protect private messages from being accessed by the public or by third parties. The
encryption and decryption procedures often involve users using a secret key to encrypt messages be-
fore transferring them over communication channels. Using the secret key, the sender decrypts the
message that was sent. Cryptography provides a number of security techniques that protect data pri-
vacy and prevent the manipulation of information, in addition to other benefits. Nowadays, security
procedures make wide use of cryptography's important security benefits [8]. In addition, algorithms
for cryptography can be classified into primary categories. The key cryptography can be either sym-
metric or asymmetric.

Symmetric key cryptography is where both the sender and receiver of the message use the same
key for data transmission encryption and decryption in the symmetric algorithm, also known as shared
key cryptography. Data Encryption Standard (DES), Triple Data Encryption Standard, Advanced En-
cryption Standard (AES), Blowfish, and ChaCha20 are several examples of different symmetric algo-
rithms [9- 11] .

Asymmetric key cryptography are where two keys are used in public key cryptography, com-
monly referred to as the asymmetric algorithm. These use the "private key" and the "public key". The
sender uses the public key to encrypt the plaintext during the data transfer, creating ciphertext in the
process. The receiver then decrypts the ciphertext using their private key. Common types of asymmet-
ric algorithms include Rivest-Shamir-Adleman (RSA), Elliptic Curve Diffie-Hellman (ECDH), and El-
liptic-Curve Cryptography (ECC) [9, 10, 12].

To develop a more effective and secure encryption system, hybrid cryptography combines both
public key (asymmetric) and shared key (symmetric) cryptography approaches. This strategy develops
new algorithms using the advantages of both approaches. A protocol that combines symmetric and
asymmetric cryptographic algorithms, using each one's advantages to achieve the highest levels of
safety and efficiency, is known as a hybrid cryptosystem. During the process, the public and private
keys remain entirely securely, thus hybrid encryption is thought to be highly reliable. Hybrid cryptog-
raphy is implemented by utilizing unique session keys in combination with symmetric encryption for
secure data transfer. Public key encryption is used to encrypt a randomly generated symmetric key.
Secure communication is then made available by the sender using their private key to decrypt the sym-
metric key. After recovering the symmetric key, it is used to decrypt the message [8, 13]. Hybrid cryp-
tography combines symmetric and asymmetric cryptographic techniques, incorporating three keys.
The goal of the three-key hybrid method is to enhance security over conventional two-key asymmetric
or single-key symmetric techniques.

Data security is a significant concern as it can be compromised through various internal and ex-
ternal methods. To safeguard data transmission over the Internet, various encryption techniques are
utilized. One such method is ChaCha20 encryption, which generates a key immediately after the input
file is uploaded. Using the same key for both encryption and decryption, ChaCha20 uses symmetric
key encryption due to this. If this key is compromised by a third party, they can easily decrypt and re-
encrypt the file, making it challenging for the user to detect any unauthorized access. While ChaCha20
is considered to be a secure algorithm, if the single key becomes known, its security may be threatened.
In contrast, ECDH utilizes asymmetric key encryption, involving two keys: a public key for encryption

http://doi.org/10.24017/science.2025.1.5

http://doi.org/10.24017/science.2025.1.5 68

and a private key for decryption. This dual-key approach provides a higher level of security, as it is
more difficult for hackers to compromise both keys at the same time. Additionally, ECDH is recognized
for delivering the same level of security as other algorithms while utilizing smaller key sizes.

A system that guarantees cloud data security, decreases computational costs, and decreases the
time required for encryption and decoding must be developed. Our suggested model increases security
and efficiency by utilizing the advantages of both the ChaCha20 and ECDH algorithms. A cloud data
center's security is largely comparable to that of a conventional data center [8, 12]. It is essential to
protect cloud computing from various threats. Based on our study, the following points highlight the
key contributions:

• This study introduces an innovative approach to cloud data security by combining the
ChaCha20 encryption algorithm with the ECDH key exchange protocol. This integration
strengthens both encryption reliability and secure key exchange processes, effectively ad-
dressing the vulnerabilities present in traditional encryption methods.

• By utilizing ChaCha20, recognized for its high performance and robust security guarantees,
this study significantly enhances encryption strength. The efficiency of ChaCha20 ensures
that the data remains secure while reducing computational overhead. ECDH's capability to
generate shared secrets over an insecure channel enhances the overall security of the encryp-
tion process, safeguarding against eavesdropping and other potential attacks.

The second section reviews related works, emphasizing recent studies and updated reference pa-

pers. The third section details the materials and methodologies used in this study, including an in-
depth discussion of several algorithms. The fourth section introduces the proposed system, highlight-
ing its components and functionality. Section five presents the results, showcasing the system's perfor-
mance. Section six offers a comprehensive discussion, comparing this study's findings with prior re-
search. Finally, the paper concludes by summarizing the key insights and implications derived from
the results.

2. Related Works

Since sensitive data and applications must be protected and cyber-security threats are becoming
more common, data security in cloud computing is a major concern. Numerous research studies have
introduced innovative solutions aimed at improving data security within the cloud environment. Ma-
halle and Shahade [14] highlight that data security in cloud computing is a significant concern, prompt-
ing the exploration of various encryption techniques. Their study proposes a hybrid approach that
combines homomorphic encryption with the Blowfish algorithm to enhance data security, thereby im-
proving the confidentiality and integrity of information kept in the cloud. Zaineldeen et al. [15] propose
a new hybrid encryption method that ensures safe communication among the user and the server by
combining the AES and Enhanced Homomorphic Cryptosystem (EHC) algorithms. Almoysheer et
al.[16] propose a hybrid model that integrates both symmetric and asymmetric cryptography tech-
niques. This approach employs Blowfish encryption to secure cloud data while using ECC for generat-
ing and managing encryption keys. Anjana [17] present a research paper focused on secure cloud stor-
age, utilizing RSA encryption, MD5 hashing, and Blowfish encryption techniques. Their proposed
method enhances the data security of cloud computing by encrypting data before uploading and gen-
erating hash values to ensure data integrity. Deshpande et al. [18] implemented a thorough examination
of cloud security from a cryptography perspective, focusing on the application of different encryption
algorithms such as AES, ECC, RSA, Secure Hash Algorithm (SHA), and the Diffie-Hellman key ex-
change. In cloud computing environments, asymmetric cloud encryption methods such as RSA are
widely used to improve data security.

As a means of advancing data storage technologies and meeting the expanding needs for data
storage, the study also looks at the convergence of edge and cloud computing. Muthulakshmi and An-
ithaashri [19] present a research paper that integrates the AES with code-based cryptography to effi-
ciently encrypt data in cloud systems. AES is a widely recognized encryption algorithm known for its

http://doi.org/10.24017/science.2025.1.5

http://doi.org/10.24017/science.2025.1.5 69

speed and security, offering an additional layer of protection for sensitive information stored in the
cloud. Chaloop and Abdullah [20] proposed utilizing hybrid encryption techniques for file encryption
that combine RSA and AES. They introduced the fundamental concepts of both AES and RSA algo-
rithms to ensure the protection of personal and enterprise data, while also evaluating their advantages
and disadvantages. The study demonstrated that the hybrid encryption algorithm optimized data se-
curity, key management, and efficiency. Abualkas and Bhaskari [21] proposed a method that would
encrypt the AES key using ECC, before using that key to both encrypt and decrypt the actual data. This
approach adds another level of protection because ECC encryption protects the AES key. To further
improve security, the system will also leverage key management strategies including rotation and split-
ting. Table 1 offers a detailed overview of the selected studies, emphasizing the cryptographic tech-
niques relevant to cloud data security.

Table 1: Overview of selected studies on cryptographic techniques for cloud data security.

No
Cipher Algo-

rithms
Description

Varieties of
Data Em-

ployed
Year

1 Homographic and
Blowfish [14]

The study proposes a hybrid homomorphic-Blowfish algo-
rithm to enhance cloud data security

Cloud data 2019

2 AES and EHC [15] The paper proposes a hybrid AES-EHC approach to improve
cloud data transfer security and efficiency

Cloud data 2020

3 Blowfish and ECC
[16]

The study introduces a Blowfish-ECC hybrid for secure and
authenticated cloud SaaS.

Cloud data 2021

4 RSA, Blowfish
and MD5 [17]

The proposed hybrid RSA, Blowfish, and MD5 encryption en-
hances cloud data security

Cloud Com-
puting

2022

5 SHA, RSA, ECC,
AES, Diffie-Hell-
man, Edge Com-

puting [18]

The paper explores RSA, ECC, AES, and SHA to strengthen
cloud security

Cloud data 2023

6 AES [19] The study introduces McEliece-AES encryption for quantum-
resistant cloud security

Cloud data 2024

7 AES, RSA [20] The study proposes a hybrid AES-RSA encryption for fast and
secure data transmission

 Data 2024

8 ECC, AES [21] The study proposes a hybrid ECC-AES encryption to enhance
cloud storage security.

Online Data
Storage

2024

With the growing adoption of cloud computing, organizations face several risks that must be ad-

dressed to protect sensitive data and maintain system integrity. Some privacy and security-related con-
cerns deemed critical for cloud computing include [12]:

• Malicious insiders: An individual who is authorized to access an organization's network and
data but uses such access in a way that compromises the integrity and confidentiality of the
company's data and information systems is known as a malevolent insider. Many organiza-
tions recognize this threat due to its difficulty regarding detection and the significant impact
it can have on the organization.

• Account or service hijacking: Software vulnerabilities and fraud combine to create this
threat. In certain situations, an attacker can access cloud resources that are sensitive, giving
them the ability to steal confidential data and passwords.

• Hypervisor vulnerabilities: A hypervisor is a critical component of virtualization. However,
hypervisors are known to have significant security vulnerabilities, and available remedies are
often limited and proprietary.

• Insecure interfaces and application programming interfaces (APIs): Organizations may be
vulnerable to security risks such as password reuse, unauthorized access, the transmission of
private data, clear text authentication, strict access control, and invalid authorizations if they
employ poorly designed interfaces and APIs.

• Cyber-attacks: Network hacking and cyberattacks have grown in seriousness in recent years.

http://doi.org/10.24017/science.2025.1.5

http://doi.org/10.24017/science.2025.1.5 70

Table 2 evaluates each algorithm based on key size, security strength, performance, and typical
use cases. The comparison highlights both well-established cryptographic techniques and newer algo-
rithms from our system, such as ChaCha20 and ECDH, showcasing their suitability for various envi-
ronments and applications.

Table 2: Comparison for benchmarking security levels of cryptographic techniques.

Algorithm Key Size Security Strength Performance Common Use Cases

AES [22] 128, 192, 256
bits

Strong; widely adopted High efficiency in both
hardware and software

Data encryption at rest and
in transit

RSA [23] 2048, 3072, 4096
bits

Secure with large key
sizes

Slower; used for small
data blocks

Primarily for key exchange
and digital signatures.

Blowfish [24] 32–448 bits Moderate; outdated for
modern needs

Fast but limited by 64-bit
block size

Primarily for legacy sys-
tems.

ECC [25] 256, 384, 521
bits

High; small key sizes
for strong security

Efficient, especially in re-
source-constrained devices

Secure communications
and key exchange.

ChaCha20 (Our
System) [11]

256 bits Strong; secure against
known attacks

Very fast in software, suit-
able for low-power de-

vices

Best for lightweight and re-
source-constrained envi-

ronments.
ECDH (Our Sys-

tem) [25]
256, 384, 521

bits
High; relies on ECC's

strength
Efficient for secure key ex-

change
Used for securely exchang-

ing keys over insecure
channels.

3. Materials and Methods

The study involves employing a hybrid cryptographic approach combining ChaCha20 and ECDH,
discussed in this section with detailed explanations of each algorithm in dedicated subsections. Follow-
ing that, the methods for secure encryption, key exchange, and decryption are outlined. For further
clarification, all methods are explained, demonstrating their integration in cloud security. Additionally,
the encryption and decryption processes are illustrated using scenarios and practical programs ad-
dressing specific security challenges.

3.1. Advanced Encryption Standard
Since AES is a symmetric key cryptography method, it encrypts and decrypts data using the same

cryptographic key. Data can be securely encrypted and decrypted using the same key according to this
type of encryption. AES uses block cypher encryption, which encrypts data by permuting, modifying,
and substituting. Each state of the data is composed of up of 128-bit pieces arranged in a matrix struc-
ture, with rows and columns acting as the keys. Every component in the matrix is referred to as a cell.
Through its multiple variations, each of which uses a different number of rounds, AES provides varying
security levels. AES encryption uses key sizes in sizes of 128, 192, and 256 bits [26].

3.2. Rivest-Shamir-Adleman
In 1977, Ronald Rivest, Adi Shamir, and Leonard Adelman introduced the RSA algorithm, the

most widely used asymmetric key cryptosystem. This encryption and authentication system has been
integral to various cryptographic applications, including email security, banking, e-commerce, and dig-
ital signatures on the Internet. The algorithm's security relies on the computational challenge of factor-
ing large integers into their prime components. The RSA process involves three primary stages: key
generation, encryption, and decryption [27].

3.3. Elliptic Curve Cryptography
A newer form of public key cryptography, ECC provides a higher security per bit than other cryp-

tography techniques currently in use today. Elliptic curves are cubic curves in mathematics that are
topologically equal to tori. Although they receive their name from the elliptic integral, they are not
directly connected to the ellipse. The fundamental universal elliptic curve used in cryptography, known
as the Weierstrass normal form, has the formula 𝑦𝑦2 = 𝑥𝑥3 + 𝑎𝑎𝑥𝑥 + 𝑏𝑏 . Different values for 𝑎𝑎 and 𝑏𝑏 define

http://doi.org/10.24017/science.2025.1.5

http://doi.org/10.24017/science.2025.1.5 71

curves of this type. The visualization of the curve can be made to extend, compress, or pinch off to form
two distinct parts by changing these parameters. In practice, curves used in cryptography are fre-
quently designed using extremely large integer values for 𝑎𝑎 and 𝑏𝑏 [28]

3.4. Blowfish
Blowfish is a symmetric block cipher that utilizes a Feistel network consisting of 16 rounds of en-

cryption and decryption operations. It processes data in 64-bit blocks and supports variable key lengths
ranging from 1 to 448 bits. The cipher employs 18 32-bit subkeys, known as P-boxes, and four 8-bit S-
boxes, each containing 256 entries, for substitution. Blowfish operates in two main stages: key expan-
sion and data encryption. During key expansion, the key is transformed into multiple subkeys. In the
data encryption phase, the plaintext undergoes 16 rounds of operations, including key-dependent per-
mutations and substitutions influenced by both the key and input data. This design ensures a high level
of security and efficiency [29]

3.5. ChaCha20 Algorithm
This algorithm makes use of 20 rounds, a 512-bit block size, and a 256-bit secret key. It is built in

stream cypher methods. Each round consists of sixteen XOR operations, sixteen additions modulo 232,
and sixteen rotation operations (ARX operations). During the data encryption and decryption opera-
tions, the state of the matrix 4𝑥𝑥4, which has sixteen entries computed by the QRF function, is used by
the method [11].

Stream cypher methods are based on the generation of key stream elements using predetermined,
dynamic states with initial values. The key stream elements combine with the plaintext parts during
the encryption process to create the ciphertext or encrypted data. For a variety of reasons, a number of
encryption algorithms that make use of stream cypher approaches have been proposed to guarantee
data confidentiality [30]. Using stream cypher techniques, the ChaCha20 encryption algorithm was cre-
ated to ensure data secrecy in a range of data security applications, such as smartphones, Google
Chrome on smart devices, and security protocols like OpenSSL and OpenSSH [11]. Several ARX logical
operations, such as addition, rotation, and XOR operations, are essential to the algorithm's architecture.
These 32-bit word ARX procedures have been shown to be effective for both hardware and software
implementations. For instance, the algorithm's 16 rounds comprise 16 XOR, 16 modulo addition (mod
232), and 16 rotation operations [31]. A 256-bit secret key, 𝐾𝐾 = (𝑘𝑘0, 𝑘𝑘1, 𝑘𝑘2, . . . , 𝑘𝑘7), is required for the
ChaCha20 cypher algorithm. At each stage, it processes data in 32-bit words. The state of the algorithm
is arranged into a 4𝑥𝑥4 matrix of 16 elements, and there are 32-bit words for each element. The following
parts are placed in rows: 𝑋𝑋0,𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4,𝑋𝑋5,𝑋𝑋6𝑋𝑋7,𝑋𝑋8𝑋𝑋9,𝑋𝑋10,𝑋𝑋11,𝑋𝑋12𝑋𝑋13,𝑋𝑋14,𝑋𝑋15,.

During encryption, the state-run matrix is initialized with predefined constant values (e.g.
X0=0x61707865, X1=0x3320646e, X2=0x79622d32, and X3=0x6b206574), while other elements are filled
with parts of the secret key (𝑋𝑋4 = 𝑘𝑘0,𝑋𝑋5 = 𝑘𝑘1,𝑋𝑋6 = 𝑘𝑘2,𝑋𝑋7 = 𝑘𝑘3, … . .𝑋𝑋11 = 𝑘𝑘7) Additionally, the matrix
includes a 32-bit counter (𝑋𝑋12 = 𝐶𝐶0) and three 32-bit nonce values (𝑋𝑋13 = 𝑛𝑛0,𝑋𝑋14 = 𝑛𝑛1,𝑋𝑋15 = 𝑛𝑛2)[32] .

Four 32-bit words (a, b, c, and d) are put into the ChaCha20 cypher algorithm's Quarter Round
Function (QRF). It performs a sequence of operations that modifies the input words, resulting in up-
dated values for aaa, bbb, ccc, and ddd, each still consisting of 32 bits. The sequence of operations is
outlined in Algorithm 1.

The keystream generation process is outlined in Algorithm 2. The current status matrix [Table 3]
illustrates this. The state of the matrix 𝑋𝑋 is first established using values from counter 𝐶𝐶0, nonce num-
bers (𝑛𝑛0,𝑛𝑛1,𝑛𝑛2), secret key 𝐾𝐾, and unchanged values. Following 20 iterations of the Quarter Round
Function (QRF), the 16 components of the state-run matrix 𝑋𝑋 go through processing to create the 𝑍𝑍 Key-
stream. After this, the keystream is used to both encrypt and decrypt the input data [33].

http://doi.org/10.24017/science.2025.1.5

http://doi.org/10.24017/science.2025.1.5 72

Algorithm 1:
Quarter Round Function QRF (a, b, c, d)
{
 a = d XOR a
 d = a + b
 d = (d) << 16
 c = b XOR c
 b = c + d
 b = (b) << 12
 a = d XOR a
 d = a + b
 d = (d) << 8
 c = b XOR c
 b = c + d
 b = (b) << 7
 Return a, b, c, d
}

Algorithm 2: ChaCha20 Key Stream Procedure
Input: State matrix X (nonce values n0,n1,n2), secret key K, 32-bit counter C0
{
 Y1 ← X
 For(i = 1; i <= 10; i++) {
 // Column rounds
 QRF(X0, X4, X8, X12)
 QRF(X5, X9, X13, X1)
 QRF(X10, X14, X2, X6)
 QRF(X15, X3, X7, X11)

 // Diagonal rounds
 QRF(X0, X5, X10, X15)
 QRF(X1, X6, X11, X12)
 QRF(X2, X7, X8, X13)
 QRF(X3, X4, X9, X14)
 }
 Z ← X + Y1
 Return Z Key Stream
 }

 Table 3: Elements of (4x4) state matrix.

0x61707865 0x3320646e 0x79622d32 0x6b206574
k0 k1 K2 K3
k4 k5 k6 k7
C0 n0 n1 n2

3.6. Key Exchange Protocol Elliptic Curve Diffie Hellman
The Diffie-Hellman key exchange algorithm is a public-key cryptography approach that requires

the completion of a number of complex mathematical operations. An algorithm's security is determined
by the difficulty of computing the discrete logarithm problem modulo a prime number. There is a dis-
crete logarithm problem when 𝑝𝑝 is a prime number, 𝑦𝑦 can be any integer, and 𝑞𝑞 is a primitive root of 𝑝𝑝.
It is computationally difficult to find 𝑥𝑥 such that 𝑦𝑦 = 𝑞𝑞𝑥𝑥 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝). This data raises an issue. For example,
Alice and Bob decide on a prime number 𝑛𝑛 and an integer 𝑞𝑞 that is a primitive root of 𝑛𝑛; 𝑛𝑛 and q are not
private. Rather, these are both known to the general public. In this algorithm, Alice generates a random
integer 𝑥𝑥 and sends the result of her calculation 𝑋𝑋 = 𝑞𝑞𝑥𝑥mod  𝑛𝑛 to Bob. Bob, in turn, generates a random
integer 𝑦𝑦 and sends his result 𝑌𝑌 = 𝑞𝑞𝑥𝑥mod  𝑛𝑛 to Alice. Alice then computes K=Yx mod n 𝐾𝐾 = 𝑌𝑌𝑋𝑋mod 𝑛𝑛,
and Bob computes K′=Xy mod  𝑛𝑛. If the calculations are correct, K=K′, this indicates that both parties
have successfully derived the same shared secret key for symmetric encryption.

The symmetric key 𝐾𝐾 can be calculated more easily and computationally efficiently using the
ECDH technique [34, 35]. Regarding the elliptic group in the addition operation of the elliptic curve

http://doi.org/10.24017/science.2025.1.5

http://doi.org/10.24017/science.2025.1.5 73

equation 𝑦𝑦2 ≡ 𝑥𝑥3 + 𝑎𝑎𝑥𝑥 + 𝑏𝑏 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝), Alice and Bob accepted a set of integers 𝑎𝑎 and 𝑏𝑏 prime numbers
and a starting point 𝐺𝐺(𝑥𝑥,𝑦𝑦). The basis point, 𝐺𝐺(𝑥𝑥,𝑦𝑦), was chosen because the addition operation makes
use of the elliptic group, and because the prime values 𝑎𝑎 and 𝑏𝑏 are the parameters that Alice and Bob
accept.

Neither the sender nor the recipient creates the domain parameter since it is difficult to implement
and takes a lot of work to determine the number of lines on a curve. In the equation 𝑇𝑇(𝑝𝑝,𝑎𝑎, 𝑏𝑏,𝐺𝐺,𝑛𝑛,ℎ),
the elliptic curve parameter domain above Fp is defined by 𝑎𝑎 and 𝑏𝑏, where 𝑝𝑝 is the field in which the
curve is specified. The number of points in a group elliptic 𝐸𝐸𝑝𝑝 (𝑎𝑎, 𝑏𝑏) divided by n is the cofactor of the
elliptic curve equation, or h. At generator point G are the group construction components. The smallest
value positive integer is n 𝐺𝐺 = 0, since n is the prime order of G.

Algorithm 3: ECDH Key Generation
Input: Domain parameters (p,a,b,G,n,h)
Output: Private key (x,y), Public keys (PA,PB)
{
 1. Select integer x,y ∈ [1,n-1]
 2. Employer A calculates PA = x.G, sends to B
 3. Employer B calculates PB = y.G, sends to A
 4. Employer A computes K = x.PB = x(y.G)
 5. Employer B computes K' = y.PA = y(x.G)
 }

The Diffie-Hellman technique is built on an elliptic curve and a known ECDH is used in the next

step of the message encryption process. It solves the following issue: two parties (generally Alice and
Bob) want to share information securely while making sure that a third party is unable to decrypt their
messages. Algorithm 4 describes the encryption procedure used by ECDH.

Algorithm 4: ECDH Encryption
Input: Domain parameters, Private keys (x,y), Public keys (PA,PB), plaintext M
Output: Ciphertext C
{
 1. Calculate S = y.PA = x.PB
 2. Calculate C = M + S
 }

The message that is encrypted is restored to its original form in this decryption procedure. Ac-

cording to the description in Algorithm 5, the decryption procedure entails subtracting the cypher point
using the shared secret key.

Algorithm 5: ECDH Decryption
Input: Domain parameters (p,a,b,G,n,h), shared secret S, ciphertext C
Output: Plaintext M
{
 1. Calculate M = C - S
 2. Return plaintext M
 }

3.7. Mitigating Risks in Key Splitting and Reassembly for ChaCha20 Encryption Systems
To mitigate the risks associated with the key splitting and reassembly process in the shown

ChaCha20 encryption system, the following measures should be implemented:

1. Encrypting Key Fragments
Each key fragment should be encrypted before transmission or storage. This adds an addi-
tional layer of security, ensuring that even if a fragment is intercepted, it remains unusable
without the encryption key.

http://doi.org/10.24017/science.2025.1.5

http://doi.org/10.24017/science.2025.1.5 74

2. Secure Transmission Channels
All communications involving key fragments should employ end-to-end encryption (e.g.,
TLS) to prevent interception during transmission. This ensures the confidentiality and integ-
rity of the fragments.

3. Randomized Fragmentation and Reassembly
Cryptographically secure randomness should be used during the fragmentation and reassem-
bly process. This makes the process non-deterministic and resistant to prediction or reverse
engineering by attackers.

4. Redundancy Mechanisms
Introducing redundancy in the key fragmentation process ensures that the system is resilient
to single-point failures. For instance, multiple copies of fragments could be created and se-
curely distributed.

5. Side-Channel Protections
Employ countermeasures such as constant-time operations during key splitting and reassem-
bly to eliminate patterns observable through side-channel attacks (e.g., timing or power anal-
ysis).

Including such a comprehensive security analysis strengthens the overall robustness and credibil-

ity of the ChaCha20-based encryption system, ensuring that both key management and data integrity
are maintained even under adversarial conditions.

3.8. Proposed System
The proposed system enhances the data security of cloud storage by implementing a robust en-

cryption and key exchange mechanism. It leverages ECDH for secure key exchange and employs the
ChaCha20 encryption algorithm to protect sensitive data during transmission and storage.

The diagram illustrates the workflow of securely exchanging cryptographic keys and encrypted
files between two parties (Alice and Bob) via a cloud service. The process can be summarized as follows:

1. Public Key Generation and Upload:
o Both Alice and Bob generate their unique public and private key pairs.
o They upload their public keys to the cloud, enabling the secure exchange.

2. Public Key Retrieval:
o Alice and Bob download each other’s public keys from the cloud.

3. Key Exchange and Shared Secret Generation:
o Using ECDH, each party combines their private key with the other’s public key to de-

rive a shared secret key, ensuring that the key is never transmitted over the network.
4. Data Encryption:

o Alice encrypts a file using a randomly generated ChaCha20 key.
o The ChaCha20 key is then encrypted with the shared secret key and uploaded to the

cloud along with the encrypted file.
5. Data Decryption:

o Bob retrieves the encrypted file and the encrypted ChaCha20 key from the cloud.
o He decrypts the ChaCha20 key using the shared secret key.
o Finally, Bob uses the decrypted ChaCha20 key to decrypt the file and access its origi-

nal contents.

Key Features:

• End-to-End Security: ECDH ensures a secure key exchange, while ChaCha20 provides robust
encryption for the data.

• Cloud Integration: The cloud serves as a medium for public key exchange and file storage,
simplifying the process while maintaining security.

http://doi.org/10.24017/science.2025.1.5

http://doi.org/10.24017/science.2025.1.5 75

• Performance and Scalability: The system's encryption mechanisms are efficient, making it
suitable for secure communication and data storage in various use cases, as shown in figure 1.

Figure 1: Cloud-based secure key exchange workflow.

A secure file transmission mechanism using the ChaCha20 symmetric encryption algorithm is in-
tegrated with the ECDH asymmetric key exchange between two parties, Alice and Bob. This process
combines the efficiency of fast symmetric encryption with the security of public-private key cryptog-
raphy, ensuring the secure transfer of files over a cloud-based system. The process, clearly illustrated
in Figure 1, is explained through the following steps:

Step 1: Encryption and Upload Process
The process begins with the encryption of the original file using the ChaCha20 stream cipher.

ChaCha20 is widely recognized for its speed and efficiency, making it suitable for environments that
require resource conservation, such as cloud-based systems. The algorithm generates a symmetric en-
cryption key used to encrypt the file, which ensures the confidentiality of the data during both trans-
mission and storage.

Once encrypted, both the encrypted file and the ChaCha20 key are uploaded to the cloud. The
encryption ensures that even if the cloud storage or transmission channels are compromised, unauthor-
ized access to the file is prevented.

Step 2: Key Generation and Exchange
In parallel with the file encryption, Alice and Bob generate their respective public-private key pairs.

This asymmetric key pair ensures secure key exchange, which is crucial for decrypting the ChaCha20
key later.

• Alice’s Role: Alice generates her public and private keys, and shares her public key with Bob.
Using her private key, she encrypts the ChaCha20 symmetric key, preparing it for secure
transmission to Bob.

• Bob’s Role: Similarly, Bob generates his key pair and shares his public key with Alice. He will
later use his private key to decrypt the ChaCha20 key encrypted by Alice.

This exchange ensures that only Bob, with his private key, can decrypt the ChaCha20 key, even if
the key is intercepted during transmission. This layer of security guarantees the integrity and confiden-
tiality of the key exchange process, preventing unauthorized parties from gaining access to the
ChaCha20 key.

Step 3: Decryption and File Retrieval
Once Bob downloads the encrypted file and the encrypted ChaCha20 key from the cloud, he uses

his private key to decrypt the ChaCha20 key. After successfully decrypting the key, Bob applies the
ChaCha20 algorithm to decrypt the original file.

http://doi.org/10.24017/science.2025.1.5

http://doi.org/10.24017/science.2025.1.5 76

This dual-layered encryption process—using ChaCha20 for the file and public-private keys for the
key—ensures the file's confidentiality throughout its lifecycle, from encryption to cloud storage and
eventual decryption. This hybrid approach, combining symmetric and asymmetric encryption tech-
niques, provides both speed and security.

Step 4: Security and Efficiency in Cloud-Based Systems
ChaCha20’s symmetric encryption algorithm provides a robust layer of security by encrypting the

file, while its performance makes it ideal for cloud environments where scalability and efficiency are
critical. The integration of asymmetric cryptography for key exchange adds another layer of security,
ensuring that even if the ChaCha20 key is intercepted, it cannot be decrypted without the appropriate
private key. This mutual authentication between Alice and Bob ensures that only the intended recipient
can access the key, defending the integrity of the system against data interceptions and man-in-the-
middle attacks. The technique achieves a compromise between security and performance by using pub-
lic-private key pairs for key exchange and ChaCha20 for encryption. Cloud storage, enhanced by secure
key transmission, ensures that files remain safe from unauthorized access both during transmission
and while stored in the cloud.

3.9. Strategies to Ensure Resilience of the Proposed System Against Real-World Attacks
The proposed system incorporates robust mitigation strategies to address potential vulnerabilities

and strengthen its security framework against common real-world attacks:

• Brute Force Resistance

o Cryptographic key lengths adhere to the current standards for computational infeasi-
bility.

o The system utilizes 256-bit keys for both ChaCha20 and ECDH, ensuring resistance to
exhaustive search attacks.

o High-entropy key generation is emphasized to further enhance security.
• Side-Channel Attack Mitigation

o The implementation employs secure coding practices, including constant-time algo-
rithms and noise injection techniques.

o Hardware-level protections are integrated to counter timing, power analysis, and elec-
tromagnetic side-channel attacks.

o Regular implementation-level analyses are conducted to proactively identify and elim-
inate vulnerabilities.

• Replay Attack Prevention
o Unique session identifiers, timestamps, and nonce values are used in the encryption

and key exchange processes.
o These mechanisms ensure that intercepted messages or keys cannot be reused, effec-

tively thwarting replay attacks.
• Comprehensive Security Testing

o The system undergoes rigorous security testing, including simulated attack scenarios
and penetration testing.

o These tests validate the system's ability to maintain integrity, confidentiality, and au-
thentication, even under active adversarial conditions.

o Continuous improvements are guided by the results of these evaluations.

By implementing these strategies, the proposed system demonstrates resilience against brute force,
side-channel, and replay attacks. These measures align with cryptographic security best practices, en-
suring the system’s practical applicability and credibility in securing sensitive cloud data.

http://doi.org/10.24017/science.2025.1.5

http://doi.org/10.24017/science.2025.1.5 77

4. Results

The proposed encryption system's performance metrics are displayed in Table 4's results. It pro-
vides secure key exchange via the combination of the ECDH and ChaCha20 encryption algorithms. The
evaluation is based on different file types, including PDF, JPG, MP3, MP4, and PPTX files of varying
sizes.

Key generation time averages 15.8ms, with negligible variance across file types, indicating that the
ECDH key exchange process is efficient and independent of file size. Encryption times are uniformly
low, averaging 2ms across all file types, reflecting the efficiency of ChaCha20. However, decryption
times show more variation, with larger files such as MP4 (79 MB) taking 6ms, and smaller files like PDF
and PPTX require only 1ms.

Memory usage during encryption and decryption follows a similar trend, increasing with file size.
The average memory used for encryption is 148.4 MB, while decryption averages 151.55 MB. This
shows that the system remains efficient even for larger files, making it suitable for cloud storage en-
cryption where both security and performance are critical.

The consistency in encryption time and moderate variation in decryption time and memory usage
demonstrate that this combined approach balances strong encryption with computational efficiency,
making it a robust choice for enhancing cloud data security.

Table 4: Performance metrics of ChaCha20 and ECDH encryption and decryption for various file types.

Types Size Key Generation
Time(ms)

Encryption
Time(ms)

Memory Used for
Encrption(MB)

Decryption
Time(ms)

Memory Used for
Decryption (MB)

PDF
File

367KB 16 2 105.93 1 108.66

JPG 9328 KB 15 2 133.52 3 136.25
MP3 7240KB 17 3 125.82 6 128.54
Mp4 79792KB 15 2 267.84 1 272.40
PPTX 1743KB 16 1 107.10 1 111.91

 Average 15.8 2 148.4 2.4 151.55

Figure 2 presents a visual comparison of encryption and decryption performance across various

file types, including PPTX, MP4, MP3, JPG, and PDF, using the ChaCha20 and ECDH algorithms. Key
performance metrics including key generation time, encryption time, decryption time, and memory
usage for both encryption and decryption are displayed in the graph. Memory usage for encryption
and decryption shows a significant increase with larger files, such as the MP4 file (79 MB), which re-
quired 267.84 MB and 272.4 MB, respectively. On the other hand, smaller files like PDF (367 KB) and
PPTX (1.7 MB) used much less memory, around 105-111 MB. Decryption times vary more than encryp-
tion times, with larger files (e.g., MP3, MP4) requiring longer decryption times (up to 6ms for MP3).
However, encryption times remain fairly consistent across all file types, averaging 2ms.

Overall, the graph highlights the efficiency of the encryption process while demonstrating a slight
increase in decryption time and memory usage for larger files, reflecting the scalability of the system in
handling different data sizes.

Table 5 highlights the performance metrics of RSA and AES encryption and decryption for differ-
ent file types. The average key generation time across all files is 2532.8ms, with MP3 files taking the
longest at 3334ms. Encryption times range from 63ms for PPTX files to 978ms for MP4 files, while de-
cryption times span 78ms to 1088ms. Memory usage varies significantly, with MP4 files requiring the
most for both encryption (75.26 MB) and decryption (77.92 MB). In contrast, PPTX files exhibit the low-
est memory usage. The results demonstrate how file size and type impact performance, particularly in
encryption.

http://doi.org/10.24017/science.2025.1.5

http://doi.org/10.24017/science.2025.1.5 78

Figure 2: Graphical representation of encryption and decryption performance metrics for various file types using ChaCha20

and ECDH.

Table 5: Performance metrics of RSA and AES encryption and decryption for various file types
Types Size Key Generation

Time(ms)
Encryption
Time(ms)

Memory Used for
Encrption(MB)

Decryption
Time(ms)

Memory Used
for Decryption

(MB)
PDF File 367KB 2192 70 1.55 78 1.11

JPG 9328 KB 2212 142 6.52 173 9.11
MP3 7240KB 3334 125 4.41 139 7.07
Mp4 79792KB 2426 978 75.26 1088 77.92
PPTX 1743KB 2500 63 0.95 111 1.70

 Average 2532.8 275.6 17.74 317.8 19.38

Figure 3 illustrates the performance metrics for encryption and decryption processes across vari-

ous file types, including PPTX, MP4, MP3, JPG, and PDF files. Key generation time, encryption time,
decryption time, and memory usage for encryption and decryption are compared. MP4 files, with the
largest size (79,792KB), require the highest decryption time (1,088ms) and significant memory for de-
cryption (77.92MB). MP3 and JPG files demonstrate higher key generation times of 3,334ms and
2,212ms, respectively. In contrast, the smaller PDF file (367KB) has the lowest encryption time (70ms)
and minimal memory requirements for encryption (1.55MB). PPTX files show moderate performance
across all metrics. These results highlight the variations in computational overhead depending on file
size and format, impacting encryption-decryption efficiency.

Figure 3: Graphical representation of encryption and decryption performance metrics for various file types using RSA

and AES.

http://doi.org/10.24017/science.2025.1.5

http://doi.org/10.24017/science.2025.1.5 79

Table 6 presents the performance metrics of Blowfish and ECC encryption and decryption for var-
ious file types. Key generation times range from 354ms to 379ms, with an average of 366.6ms. Encryp-
tion time varies significantly, with the highest recorded for JPG files (127ms) and the lowest for PDF
files (14ms). Memory usage for encryption and decryption remains consistent, averaging 74 MB and
87.4 MB, respectively. Decryption times follow a similar trend, averaging 66.4ms across all file types.
Overall, the performance demonstrates efficient processing for both algorithms, making them suitable
for different file formats.

Table 6: Performance metrics of Blowfish and ECC encryption and decryption for various file types.

Types Size Key Generation
Time(ms)

Encryption
Time(ms)

Memory Used for
Encrption(MB)

Decryption
Time(ms)

Memory
Used for
Decryption
(MB)

PDF File 367KB 354 14 62 11 62
JPG 9328 KB 376 127 88 124 115
MP3 7240KB 356 110 82 94 103
Mp4 79792KB 379 74 74 75 88
PPTX 1743KB 368 29 64 28 69

 Average 366.6 70.8 74 66.4 87.4

The graphical representation in Figure 4 illustrates the encryption and decryption performance
metrics for various file types using the Blowfish and ECC algorithms. Metrics such as key generation
time, encryption time, decryption time, memory used for encryption, and memory used for decryption
are compared across a range of file types (PPTX, MP4, MP3, JPG, and PDF). Each file's size significantly
influences these metrics. Notably, JPG and MP4 files exhibit higher memory usage during encryption
and decryption compared to smaller files like PDF. Blowfish and ECC's efficiency are reflected in the
processing times and memory usage trends, highlighting their suitability for specific file types.

Figure 4: Graphical representation of encryption and decryption performance metrics for various file types using Blowfish and

ECC.

5. Discussion
Previously, hybrid encryption methods such as Blowfish with ECC and RSA with AES were used

[29, 36] . However, our proposed hybrid approach using ChaCha20 and ECDH demonstrates superior
performance. A comparison of these hybrid encryption methods is presented in table 7. The ChaCha20
and ECDH method outperforms the others, achieving the fastest key generation time (15.8ms) and en-
cryption time (2ms), with a moderate memory consumption for encryption (148.4 MB) and decryption
(151.55 MB). In contrast, the RSA and AES method had the slowest performance, with key generation
taking 2532.8ms and encryption 275.6ms, requiring minimal memory. The Blowfish and ECC approach
offered a balanced performance, with a key generation time of 366.6ms and encryption time of 70.8ms.

http://doi.org/10.24017/science.2025.1.5

http://doi.org/10.24017/science.2025.1.5 80

These results highlight the suitability of different hybrid encryption methods for varying performance
requirements in e-services.

Table 7: Performance comparison of hybrid encryption methods.

Encryption Method
Key Genera-

tion Time
(Ms)

Encryption
Time (Ms)

Memory Used
for Encrp-
tion(MB)

Decryption
Time(Ms)

Memory Used
for Decryp-
tion (MB)

Hybrid Encryption ChaCha20
and ECDH (our system)

15.8 2 148.4 2.4 151.55

Hybrid Encryption RSA and
AES

2532.8 275.6 17.74 317.8 19.38

Hybrid Encryption Blowfish
and ECC

366.6 70.8 74 66.4 87.4

ChaCha20 offers exceptional efficiency in software, making it an excellent choice for devices lack-

ing AES specific hardware, such as mobile and embedded systems. Despite being newer than AES, it
has undergone rigorous cryptographic analysis and has no significant vulnerabilities, ensuring strong
security. Its integration into widely used protocols like TLS 1.3 and adoption by industry leaders such
as Google highlight its growing acceptance and reliability. While AES remains the benchmark for well-
tested cryptographic standards, ChaCha20’s efficiency and proven security make it a strong candidate
for modern, resource-constrained, or mobile-focused systems. Additionally, using ECDH for key ex-
change introduces a computational overhead compared to symmetric-only methods. These costs be-
come significant in resource-constrained or high-demand environments, potentially impacting scala-
bility. To mitigate these challenges while retaining the security benefits of ECDH, the following strate-
gies are proposed:

• Hardware Acceleration: Cryptographic accelerators or hardware security modules (HSMs)
can offload ECDH computations from the CPU. These solutions enhance scalability by effi-
ciently handling high volumes of cryptographic operations, and are increasingly accessible.

• Optimized Algorithms: Utilizing efficient elliptic curve implementations, such as
Curve25519 or secp256r1, reduces the computational overhead. These curves offer faster key
exchange operations without compromising security.

• Ephemeral Key Caching: Reusing ephemeral keys for short-lived sessions can reduce the fre-
quency of ECDH computations. This approach is especially advantageous in scenarios like
IoT, where connections are frequent but transient.

• Hybrid Cryptographic Approaches: Combining ECDH for initial key exchanges with sym-
metric encryption for subsequent communication balances scalability and security. Symmet-
ric algorithms are computationally lighter, ensuring high performance during ongoing data
exchanges.

These strategies can significantly improve the scalability of ECDH-based systems, making them
viable for a wider range of applications without sacrificing security.

6. Conclusions

In the dynamic field of cloud computing, safeguarding data during transit and storage is para-
mount. A robust and efficient approach integrates ChaCha20 for encryption and ECDH for secure key
exchange. ChaCha20 ensures high-speed encryption with strong security, while ECDH enables reliable
key exchange over untrusted channels, ensuring confidentiality, integrity, and authenticity.

A comparative analysis highlights the exceptional efficiency of the ChaCha20 and ECDH hybrid
system. It outperforms alternatives like Blowfish with ECC and RSA with AES in key performance
metrics. ChaCha20 and ECDH achieve the fastest key generation time of 15.8ms, encryption time of
2ms, and decryption time of 2.4ms, with a minimal memory usage for encryption of 148.4 MB and
decryption of 151.55 MB. In contrast, Blowfish with ECC has a key generation time of 366.6ms, an

http://doi.org/10.24017/science.2025.1.5

http://doi.org/10.24017/science.2025.1.5 81

encryption time of 70.8ms, and decryption time of 66.4ms, with a memory usage of 74 MB during en-
cryption and 87.4 MB during decryption. In comparison, RSA with AES requires 2532.8ms for key gen-
eration, 275.6ms for encryption, and 317.8ms for decryption, with a memory consumption of 17.74 MB
for encryption and 19.38 MB for decryption. While Blowfish with ECC performs better than RSA with
AES in speed, it still requires significantly more time and memory compared to ChaCha20 and ECDH.
These findings emphasize that the ChaCha20 and ECDH combination offers a highly optimized solu-
tion for cloud computing, balancing speed, memory efficiency, and robust encryption.

This hybrid system is ideal for modern applications requiring lightweight, high-performance cryp-
tographic techniques. Future research could explore ways to further enhance scalability and adaptabil-
ity, enabling this approach to address evolving security needs in diverse real-world scenarios. Alt-
hough ChaCha20 combined with ECDH is known for its efficiency and security, challenges may arise
when deploying this framework on resource-constrained devices such as IoT sensors or embedded sys-
tems. Limited computational power, restricted memory capacity, and energy consumption concerns
can hinder performance. Optimization strategies, such as reducing the cryptographic overhead or
adopting lightweight protocols, may be necessary to ensure smooth operation in these environments
without compromising security.

Author contributions: Rebwar Khalid Muhammed: Investigation, Methodology and Project Administration.
Zryan Najat Rashid: Formal analysis, Software, Writing – original draft, Shaida Jumaah Saydah: Supervision,
Writing – review and editing, Validation.

Data availability: The data will be made available on request.

Conflicts of interest: The authors declare that they have no known competing financial interests or personal rela-
tionships that could have appeared to influence the work reported in this paper.

Funding: The authors did not receive support from any organization for the conducting of the study.

References
[1] Y. S. Abdulsalam and M. Hedabou, “Security and privacy in cloud computing: technical review,” Future Internet, vol. 14,

no. 11, pp. 1-27, Dec. 27, 2022. doi: 10.3390/fi14010011.
[2] S. Akter, K. Michael, M. R. Uddin, G. McCarthy, and M. Rahman, “Transforming business using digital innovations: the

application of AI, blockchain, cloud and data analytics,” Annals of Operations Research, vol. 308, no. 1–2, pp. 7–39, Jan. 2022,
doi: 10.1007/s10479-020-03620-w.

[3] K. Sasikumar and S. Nagarajan, “Comprehensive review and analysis of cryptography techniques in cloud computing,”
IEEE Access, vol. 12, pp. 52325–52351, 2024, doi: 10.1109/ACCESS.2024.3385449.

[4] M. A. M.Sadeeq, S. R. M. Zeebaree, R. Qashi, S. H. Ahmed, and K. Jacksi, “Internet of things security: a survey,” in 2018
International Conference on Advanced Science and Engineering (ICOASE), 2018, pp. 162–166. doi: 10.1109/ICOASE.2018.8548785.

[5] A. Orobosade, T. A. Favour-Bethy, A. B. Kayode, and A. J. Gabriel, “Cloud application security using hybrid encryption,”
Communications on Applied Electronics, vol. 7, no. 33, pp. 25–31, 2020, doi: 10.5120/cae2020652866.

[6] S. Srisakthi and A. P. Shanthi, “Design of a secure encryption model (sem) for cloud data storage using hadamard trans-
forms,” Wireless Personal Communications, vol. 100, no. 4, pp. 1727–1741, 2018, doi: 10.1007/s11277-018-5667-8.

[7] X.M. He, X. S. Wang, D. Li, and Y.-N. Hao, “Semi-Homogenous generalization: improving homogenous generalization for
privacy preservation in cloud computing,”Journal of Computer Science and Technology, vol. 31, no. 6, pp. 1124–1135, 2016,
doi: 10.1007/s11390-016-1687-6.

[8] K. F. Jasim, R. J. Ismail, A. A. N. Al-Rabeeah, and S. Solaimanzadeh, “Analysis the Structures of Some Symmetric Ci-pher
Algorithms Suitable for the Security of IoT Devices,” Cihan University-Erbil Scientific Journal, vol. 5, no. 2, pp. 13–19, 2021.
https://doi.org/10.24086/cuesj.v5n2y2021.pp13-19

[9] R. K. Muhammed, K. H. Ali Faraj, J. F. G. Mohammed, T. N. Ahmad Al Attar, S. J. Saydah, and D. A. Rashid, “Automated
performance analysis E-services by AES-based hybrid cryptosystems with RSA, ElGamal, and ECC,” Advances in Science,
Technology and Engineering Systems Journal, vol. 9, no. 3, pp. 84–91, Jul. 2024, doi: 10.25046/aj090308.

[10] M. Bhavitha, K. Rakshitha, and S. M. Rajagopal, “Performance evaluation of AES, DES, RSA, and paillier homomorphic
for image security,” in 2024 IEEE 9th International Conference for Convergence in Technology (I2CT), IEEE, Apr. 2024, pp. 1–5.
doi: 10.1109/I2CT61223.2024.10544282.

[11] Muhammed et al., “Comparative analysis of AES, Blowfish, Twofish, Salsa20, and ChaCha20 for Image Encryption,” Kur-
distan Journal of Applied Research, vol. 9, no. 1, pp. 52–65, May 2024, doi: 10.24017/science.2024.1.5.

[12] P. Verma, J. Shekhar, and A. A. Preety, “A survey for performance analysis various cryptography techniques digital con-
tents,” International Journal of Computer Science and Mobile Computing, vol. 4, no. 1, pp. 522–531, 2015.

http://doi.org/10.24017/science.2025.1.5

http://doi.org/10.24017/science.2025.1.5 82

[13] A. Gour, S. Singh Malhi, G. Singh, and G. Kaur, “Hybrid cryptographic approach: for secure data communication using

block cipher techniques,” E3S Web of Conferences, vol. 556, p. 01048, Aug. 2024, doi: 10.1051/e3sconf/202455601048.
[14] V. S. Mahalle and A. K. Shahade, “Enhancing the data security in Cloud by implementing hybrid (Rsa & Aes) encryption

algorithm,” in 2014 IEEE International Conference on Power, Automation and Communication (INPAC), IEEE, Oct. 2014,
pp. 146-149. doi: 10.1109/INPAC.2014.6981152.

[15] S. Zaineldeen and A. Ate, “Improved cloud data transfer security using hybrid encryption algorithm,” Indonesian Journal
of Electrical Engineering and Computer Science, vol. 20, no. 1, pp. 521–527, Oct. 2020, doi: 10.11591/ijeecs.v20.i1.pp521-527.

[16] N. Almoysheer, M. Humayun, and N. Z. Jhanjhi, “Enhancing cloud data security using multilevel encryption techniques.,”
Turkish Online Journal of Qualitative Inquiry, vol. 12, no. 3, 2021.

[17] D. A. S. Anjana, “Hybrid Cryptographic solution using RSA, Blowfish and MD5 for information security in cloud compu-
ting,” Mathematical Statistician and Engineering Applications, vol. 71, no. 3s, pp. 1250–1268, 2022.

[18] A. G. Deshpande, C. Srinivasan, R. Raman, S. Rajarajan, and R. Adhvaryu, “Enhancing cloud security: a deep cryptographic
analysis,” in 2023 International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT),
2023, pp. 1118–1123. doi: 10.1109/ICAICCIT60255.2023.10465863.

[19] R. M. Muthulakshmi and T. P Anithaashri, “A Robust Approach to Cloud data security using an amalgamation of aes and
code-based cryptography,” in 2024 International Conference on Science Technology Engineering and Management (ICSTEM),
2024, pp. 1–5. doi: 10.1109/ICSTEM61137.2024.10560532.

[20] S. G. Chaloop and M. Z. Abdullah, “Enhancing hybrid security approach using AES and RSA algorithms,” Journal of Engi-
neering and Sustainable Development, vol. 25, no. 4, pp. 58–66, Feb. 2022, doi: 10.31272/jeasd.25.4.6.

[21] Y. M. A. Abualkas and D. L. Bhaskari, “Hybrid approach to cloud storage security using ECC-AES encryption and key
management techniques,” International Journal of Engineering Trends and Technology, vol. 72, no. 4, pp. 92–100, Apr. 2024,
doi: 10.14445/22315381/IJETT-V72I4P110.

[22] B. Sarkar, A. Saha, D. Dutta, G. De Sarkar, and K. Karmakar, “A Survey on the Advanced Encryption Standard (AES): A
Pillar of Modern Cryptography,” International Journal of Computer Science and Mobile Computing, vol. 13, no. 4, pp. 68–
87, Apr. 2024, doi.org/10.47760/ijcsmc.2024.v13i04.008

[23] E. Ochoa-Jimenez, L. Rivera-Zamarripa, N. Cruz-Cortes, and F. Rodriguez-Henriquez, “Implementation of RSA signatures
on GPU and CPU architectures,” IEEE Access, vol. 8, pp. 9928–9941, 2020, doi: 10.1109/ACCESS.2019.2963826.

[24] M. Faheem, S. Jamel, A. Hassan, Z. A., N. Shafinaz, and M. Mat, “A Survey on the cryptographic encryption algorithms,”
International Journal of Advanced Computer Science and Applications, vol. 8, no. 11, 2017, doi: 10.14569/IJACSA.2017.081141.

[25] O. Popoola, M. A. Rodrigues, J. Marchang, A. Shenfield, A. Ikpehai, and J. Popoola, “An optimized hybrid encryption
framework for smart home healthcare: ensuring data confidentiality and security,” Internet of Things, vol. 27, p. 101314, Oct.
2024, doi: 10.1016/j.iot.2024.101314.

[26] Z. A. Mohammed, H. Q. Gheni, Z. J. Hussein, and A. K. M. Al-Qurabat, “Advancing cloud image security via aes algorithm
enhancement techniques,” Engineering, Technology & Applied Science Research, vol. 14, no. 1, pp. 12694–12701, Feb. 2024, doi:
10.48084/etasr.6601.

[27] S. F. Yousif, “Performance Comparison between RSA and El-Gamal algorithms for speech data encryption and decryption,”
Diyala Journal of Engineering Sciences, pp. 123–137, Mar. 2023, doi: 10.24237/djes.2023.16112.

[28] P. William, A. Choubey, G. S. Chhabra, R. Bhattacharya, K. Vengatesan, and S. Choubey, “Assessment of hybrid crypto-
graphic algorithm for secure sharing of textual and pictorial content,” in 2022 International Conference on Electronics and
Renewable Systems (ICEARS), IEEE, Mar. 2022, pp. 918–922. doi: 10.1109/ICEARS53579.2022.9751932.

[29] P. Chinnasamy, S. Padmavathi, R. Swathy, and S. Rakesh, “Efficient data security using hybrid cryptography on cloud
computing,” 2021, pp. 537–547. doi: 10.1007/978-981-15-7345-3_46.

[30] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and Y. Papaefstathiou, “A survey of lightweight stream ciphers for embedded
systems,” Security and Communication Networks, vol. 9, no. 10, pp. 1226–1246, Jul. 2016, doi: 10.1002/sec.1399.

[31] M. Coutinho and T. C. Souza Neto, “Improved linear approximations to ARX ciphers and attacks against ChaCha,” in
Advances in Cryptology – EUROCRYPT 2021, A. Canteaut and F.-X. Standaert, Eds., Cham: Springer International Publishing,
2021, pp. 711–740. doi: doi.org/10.1007/978-3-030-77870-5_25.

[32] P. McLaren, W. J. Buchanan, G. Russell, and Z. Tan, “Deriving ChaCha20 key streams from targeted memory analysis,”
Journal of Information Security and Applications, vol. 48, p. 102372, 2019, doi: 10.1016/j.jisa.2019.102372.

[33] S. M. S. Reza, A. Ayob, M. M. Arifeen, N. Amin, M. H. M. Saad, and A. Hussain, “A lightweight security scheme for
advanced metering infrastructures in smart grid,” Bulletin of Electrical Engineering and Informatics, vol. 9, no. 2, pp. 777–784,
2020, doi: 10.11591/eei.v9i2.2086.

[34] A. Saepulrohman and T. P. Negara, “Implementation of elliptic curve diffie-hellman (ECDH) for encoding messeges be-
comes a point on the gf (𝒑𝒑𝒑𝒑),” 2020.

[35] S. Madasu, P. Murugesan, H. V. Jaganathan, and S. Pamulaparthyvenkata, “Elliptic curve diffie-hellman based privacy-
preserving deduplication for big data in cloud systems,” in 2024 International Conference on Intelligent Algorithms for Com-
putational Intelligence Systems (IACIS), IEEE, Aug. 2024, pp. 1–4. doi: 10.1109/IACIS61494.2024.10721723.

[36] A. P. Jagadeesan, K. Jain, and R. Aragona, “Performance comparison of hybrid encryption models,” in 2023 Second Inter-
national Conference on Augmented Intelligence and Sustainable Systems (ICAISS), IEEE, Aug. 2023, pp. 1196–1203. doi:
10.1109/ICAISS58487.2023.10250698.

http://doi.org/10.24017/science.2025.1.5

	1. Introduction
	2. Related Works
	3. Materials and Methods
	3.1. Advanced Encryption Standard
	3.2. Rivest-Shamir-Adleman
	3.3. Elliptic Curve Cryptography
	3.4. Blowfish
	3.5. ChaCha20 Algorithm
	3.6. Key Exchange Protocol Elliptic Curve Diffie Hellman
	3.7. Mitigating Risks in Key Splitting and Reassembly for ChaCha20 Encryption Systems
	3.8. Proposed System
	3.9. Strategies to Ensure Resilience of the Proposed System Against Real-World Attacks

	4. Results
	5. Discussion
	6. Conclusions
	References

