High Resistance to β-Lactams but Sustained Susceptibility to Colistin and Carbapenems in Escherichia coli Isolated from Urinary Tract Infections
https://doi.org/10.24017/science.2025.1.13
Abstract views: 0 / PDF downloads: 0Abstract
Multidrug-resistant bacterial strains represent a growing public health threat, particularly in clinical environments, as they significantly impair the success of treatment and control strategies for infectious diseases. This cross-sectional study investigated the antimicrobial resistance profiles of 100 Escherichia coli (E. coli) isolates derived from urine specimens of patients with symptomatic urinary tract infections (UTIs) in Sulaymaniyah City, Iraq. The samples were obtained from individuals visiting both public and private hospitals between November 2024 and February 2025. Bacterial identification and antimicrobial susceptibility testing were conducted using the VITEK 2 automated system at hospital laboratories, and molecular confirmation of the isolates was achieved through amplification of the uidA (glucuronidase) gene specific to E. coli. A total of ten antibiotics from various antimicrobial classes were tested. Colistin demonstrated complete effectiveness, with a 100% susceptibility rate, followed by doripenem (93%), imipenem (84%), tigecycline (71%), and amoxicillin-sulbactam (65%). In contrast, amoxicillin and amoxicillin-clavulanate showed high resistance rates of 83% and 82%, respectively. Resistance to cephalosporins was also considerable, with cefixime and ceftazidime exhibiting resistance rates of 70% and 60%. The findings highlight the continued effectiveness of colistin and carbapenems but draw attention to the concerning resistance to widely used β-lactams and cephalosporins. These results underscore the necessity of sustained antimicrobial resistance surveillance and improved antibiotic stewardship. The data generated in this study are critical for guiding empirical treatment decisions and enhancing the clinical management of E. coli-associated UTIs in the region.
Keywords:
References
B. O. Murray et al., ‘Recurrent urinary tract infection: a mystery in search of better model systems’, Frontiers in Cellu-lar and Infection Microbiology, vol. 11, p. 691210, 2021, doi: 10.3389/fcimb.2021.691210. DOI: https://doi.org/10.3389/fcimb.2021.691210
M. B. Jalil and M. Y. N. Al Atbee, ‘The prevalence of multiple drug resistance Escherichia coli and Klebsiella pneumoni-ae isolated from patients with urinary tract infections’, Journal of Clinical Laboratory Analysis, vol. 36, no. 9, p. e24619, 2022, doi: 10.1002/jcla.24619. DOI: https://doi.org/10.1002/jcla.24619
J. Gu, X. Chen, Z. Yang, Y. Bai, and X. Zhang, ‘Gender differences in the microbial spectrum and antibiotic sensitivity of uropathogens isolated from patients with urinary stones’, Journal of Clinical Laboratory Analysis, vol. 36, no. 1, p. e24155, 2022, doi: 10.1002/jcla.24155. DOI: https://doi.org/10.1002/jcla.24155
G. Mancuso, A. Midiri, E. Gerace, M. Marra, S. Zummo, and C. Biondo, ‘Urinary tract infections: the current scenar-io and future prospects’, Pathogens, vol. 12, no. 4, p. 623, 2023 doi: 10.3390/pathogens12040623. DOI: https://doi.org/10.3390/pathogens12040623
S. Prabhala, A. Sundaresan, A. Varaiya, and N. Carolina, ‘Prevalence of bacterial isolates and change in their antibi-otic susceptibility patterns in urinary tract infections-A five year retrospective study’, The Journal of Community Health Management, vol. 10, no. 4, pp. 157–162, 2024, , doi: 10.18231/j.jchm.2023.034. DOI: https://doi.org/10.18231/j.jchm.2023.034
S. Koley and M. Mukherjee, ‘Incidence of potential β-lactam resistance genes and related mobile genetic elements in uropathogenic Escherichia coli from pregnant women from Kolkata: β-lactam resistance in uropathogenic E. coli in pregnancy’, Indian Journal of Experimental Biology (IJEB), vol. 62, no. 08, pp. 670–677, 2024, doi: 10.56042/ijeb.v62i08.5306. DOI: https://doi.org/10.56042/ijeb.v62i08.5306
T. A. Hama-Soor, S. S. Salih, and S. J. Muhamad, ‘The β-lactamase profile of Escherichia coli isolates from patients with urinary tract infections in Teaching Hospital in Sulaimani, Iraq’, Annals of Parasitology, vol. 67, no. 4, 2021, doi: 10.17420/ap6704.382.
A. Erb, T. Stürmer, R. Marre, and H. Brenner, ‘Prevalence of antibiotic resistance in Escherichia coli: overview of geo-graphical, temporal, and methodological variations’, European Journal of Clinical Microbiology & Infectious Diseases, vol. 26, pp. 83–90, 2007, doi: 10.1007/s10096-006-0248-2. DOI: https://doi.org/10.1007/s10096-006-0248-2
M. Kibret and B. Abera, ‘Antimicrobial susceptibility patterns of E. coli from clinical sources in northeast Ethiopia’, African Health Sciences, vol. 11, pp. 40–45, 2011, doi: 10.4314/ahs.v11i3.70069. DOI: https://doi.org/10.4314/ahs.v11i3.70069
A. M. Borcan, G. Radu, M. Simoiu, E. L. Costea, and A. Rafila, ‘A Five-Year Analysis of Antibiotic Resistance Trends among Bacteria Identified in Positive Urine Samples in a Tertiary Care Hospital from Bucharest, Romania’, Antibiotics, vol. 13, no. 2, p. 160, 2024, doi: 10.3390/antibiotics13020160. DOI: https://doi.org/10.3390/antibiotics13020160
I. A. Naqid, N. R. Hussein, A. Balatay, K. A. Saeed, and H. A. Ahmed, ‘Antibiotic susceptibility patterns of uro-pathogens isolated from female patients with urinary tract infection in Duhok province, Iraq’, Jundishapur Journal of Health Sciences, vol. 12, no. 3, 2020, doi: 10.5812/jjhs.105146. DOI: https://doi.org/10.5812/jjhs.105146
N. A. Al Humam, ‘Special biochemical profiles of Escherichia coli strains isolated from humans and camels by the VITEK 2 automated system in Al-Ahsa, Saudi Arabia’, African Journal of Microbiology Research, vol. 10, no. 22, pp. 783–790, 2016, doi: 10.5897/AJMR2016.8047. DOI: https://doi.org/10.5897/AJMR2016.8047
A. A. Dashti, M. M. Jadaon, A. M. Abdulsamad, and H. M. Dashti, ‘Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques’, Kuwait Medical Journal, vol. 41, no. 2, pp. 117–122, 2009, https://www.researchgate.net/profile/Ali-Dashti-8/publication/266888615_Heat_Treatment_of_Bacteria_A_Simple_Method_of_DNA_Extraction_for_Molecular_Techniques/links/54432a6e0cf2a76a3ccb0ae5/Heat-Treatment-of-Bacteria-A-Simple-Method-of-DNA-Extraction-for-Molecular-Techniques.pdf.
F. Molina, E. López-Acedo, R. Tabla, I. Roa, A. Gómez, and J. E. Rebollo, “Improved detection of Escherichia coli and coliform bacteria by multiplex PCR,” BMC Biotechnol, vol. 15, pp. 1–9, 2015, doi: 10.1186/s12896-015-0168-2. DOI: https://doi.org/10.1186/s12896-015-0168-2
A. R. Alaa et al., ‘The antibiotic resistance pattern and molecular characterization of blaCTX and blaTEM genes of E. coli isolated from different hosts ased on the rate of antibiotic consumption in Sulaymaniyah/ Iraq.’, Applied Ecology and Environmental Research, vol. 18, no. 5, 2020, doi: 10.15666/aeer/1805_60256040. DOI: https://doi.org/10.15666/aeer/1805_60256040
J. Chen and M. W. Griffiths, ‘PCR differentiation of Escherichia coli from other Gram‐negative bacteria using primers derived from the nucleotide sequences flanking the gene encoding the universal stress protein’, Letters in Applied Mi-crobiology, vol. 27, no. 6, pp. 369–371, 1998, doi: 10.1046/j.1472-765x.1998.00445.x. DOI: https://doi.org/10.1046/j.1472-765X.1998.00445.x
I. Gajic et al., ‘Antimicrobial susceptibility testing: a comprehensive review of currently used methods’, Antibiotics, vol. 11, no. 4, p. 427, 2022, doi: 10.3390/antibiotics11040427. DOI: https://doi.org/10.3390/antibiotics11040427
A. Muhammad, S. N. Khan, N. Ali, M. U. Rehman, and I. Ali, ‘Prevalence and antibiotic susceptibility pattern of uropathogens in outpatients at a tertiary care hospital’, New Microbes and New Infections, vol. 36, p. 100716, 2020, doi: DOI: https://doi.org/10.1016/j.nmni.2020.100716
1016/J.NMNI.2020.100716.
A. Sorlózano-Puerto, J. M. Gómez-Luque, J. de D. Luna-del-Castillo, J. M. Navarro-Marí, and J. Gutiérrez-Fernández, ‘Etiological and resistance profile of bacteria involved in urinary tract infections in young children’, Bio-Med Research International, vol. 2017, no. 1, p. 4909452, 2017, doi: 10.1155/2017/4909452. DOI: https://doi.org/10.1155/2017/4909452
A. A. Abejew, A. A. Denboba, and A. G. Mekonnen, ‘Prevalence and antibiotic resistance pattern of urinary tract bacterial infections in Dessie area, North-East Ethiopia’, BMC Research Notes, vol. 7, pp. 1–7, 2014, doi: 10.1186/1756-0500-7-687. DOI: https://doi.org/10.1186/1756-0500-7-687
N. u din Wani, N. Bali, L. Bashir, J. Ahmad, and S. Ahmad, ‘Comparison of Automated System Vitek-2 with Con-ventional Methods, for Identification and Antibiotic Sensitivity in Gram Positive Organisms.’, Journal of Medical Sci-ences (SKIMS), vol. 22, no. 2, pp. 12–17, 2019, doi: 10.33883/jms.v22i2.433. DOI: https://doi.org/10.33883/jms.v22i2.433
Y. A. Abdlla and R. A. Al-Sanjary, ‘The molecular identification of diarrheagenic Escherichia coli (DEC) isolated from meat and meat products’, Iraqi Journal of Veterinary Sciences, vol. 37, no. 1, pp. 9–15, 2023, doi: 10.33899/ijvs.2022.133244.2192. DOI: https://doi.org/10.33899/ijvs.2022.133244.2192
N. M. Aboelnasr, M. Abu-Elghait, H. Gebreel, and H. I. Youssef, ‘Prevalence of Colistin resistance among difficult-to-treat Gram-negative nosocomial pathogens: An emerging clinical challenge’, Microbial Biosystems, vol. 9, no. 2, pp. 166–178, 2024, doi: 10.21608/mb.2024.306423.1129. DOI: https://doi.org/10.21608/mb.2024.306423.1129
H. Wu et al., ‘Changes of antibiotic resistance over time among Escherichia coli peritonitis in Southern China’, Perito-neal Dialysis International, vol. 42, no. 2, pp. 218–222, 2022, doi: 10.1177/08968608211045272. DOI: https://doi.org/10.1177/08968608211045272
I. A. Naqid, A. A. Balatay, N. R. Hussein, K. A. Saeed, H. A. Ahmed, and S. H. Yousif, ‘Antibiotic susceptibility pattern of Escherichia coli isolated from various clinical samples in Duhok City, Kurdistan Region of Iraq’, Interna-tional Journal of Infectious Diseases, vol. 7, no. 3, p. e103740, 2020, doi: 10.5812/IJI.103740. DOI: https://doi.org/10.5812/iji.103740
M. S. Assafi, F. F. Ali, R. F. Polis, N. J. Sabaly, and S. M. Qarani, ‘An epidemiological and multidrug resistance study for E. coli isolated from urinary tract infection (three years of study)’, Baghdad Science Journal, vol. 19, no. 1, p. 7, 2022, doi: 10.21123/bsj.2022.19.1.0007. DOI: https://doi.org/10.21123/bsj.2022.19.1.0007
F. Ghanbarinasab, M. Haeili, S. N. Ghanati, and M. Moghimi, ‘High prevalence of OXA-48-like and NDM car-bapenemases among carbapenem resistant Klebsiella pneumoniae of clinical origin from Iran’, Iranian Journal of Mi-crobiology, vol. 15, no. 5, p. 609, 2023, doi: 10.18502/ijm.v15i5.13866. DOI: https://doi.org/10.18502/ijm.v15i5.13866
M. S. Güler, G. Aygün, S. Akkuş, A. M. Kuşkucu, Ö. Küçükbasmacİ, and N. Gönüllü, ‘Prevalence of car-bapenemases in Enterobacterales from urine specimens in an university hospital in Istanbul, Turkey’, Acta Microbio-logica et Immunologica Hungarica, vol. 70, no. 2, pp. 147–154, 2023, doi: 10.1007/s10096-006-0248-2. DOI: https://doi.org/10.1556/030.2023.01986
M. B. Benklaouz, H. Aggad, and Q. Benameur, ‘Resistance to multiple first-line antibiotics among Escherichia coli from poultry in Western Algeria’, Veterinary World, vol. 13, no. 2, p. 290, 2020, doi: 10.14202/vetworld.2020.290-295. DOI: https://doi.org/10.14202/vetworld.2020.290-295
J. Martínez-Casanova et al., ‘Risk factors for amoxicillin-clavulanate resistance in community-onset urinary tract infections caused by Escherichia coli or Klebsiella pneumoniae: the role of prior exposure to fluoroquinolones’, Antibiot-ics, vol. 10, no. 5, p. 582, 2021, doi: 10.3390/antibiotics10050582. DOI: https://doi.org/10.3390/antibiotics10050582
O. A. Hamza and R. Omran, ‘Multidrug drug resistance of Escherichia coli and Klebsiella isolated from Iraqi patients and microbiota’, Journal of Biosciences and Medicines, vol. 10, no. 11, pp. 240–252, 2022, doi: 10.4236/jbm.2022.1011019. DOI: https://doi.org/10.4236/jbm.2022.1011019
M. K. Chaudhary, I. Jadhav, and M. R. Banjara, ‘Molecular detection of plasmid mediated blaTEM, blaCTX− M, and blaSHV genes in Extended Spectrum β-Lactamase (ESBL) Escherichia coli from clinical samples’, Annals of Clinical Microbiology and Antimicrobials, vol. 22, no. 1, p. 33, 2023, doi: 10.1186/s12941-023-00584-0. DOI: https://doi.org/10.1186/s12941-023-00584-0
M. H. García, C. A. Valdez, and T. V. Porta, ‘Detección de los genes de β-lactamasas blaTEM, blaSHV y blaCTX-M en aislamientos de Escherichia coli comunitarios’, Revista Científica, vol. 28, no. 2, pp. 41–53, 2019, doi: 10.54495/Rev.Cientifica.v28i2.56. DOI: https://doi.org/10.54495/Rev.Cientifica.v28i2.56
W. C. Shropshire et al., ‘Genetic determinants underlying the progressive phenotype of β-lactam/β-lactamase inhibi-tor resistance in Escherichia coli’, Microbiology Spectrum, vol. 11, no. 6, pp. e02221-23, 2023, doi: 10.1128/spectrum.02221-23. DOI: https://doi.org/10.1128/spectrum.02221-23
R. A. Mahmoud, Khalid Fadhil Abbas Al Rubaie, and Fadhila Imad Attwan Al Mahfoodh, “Antibiotic resistance pattern: a descriptive analysis at the general hospitals of Basra, Iraq during 2021”, International Journal of Emerging Trends in Health Sciences, vol. 6, no. 2, pp. 80–89, Aug. 2022, doi: 10.18844/ijeths.v6i2.8745. DOI: https://doi.org/10.18844/ijeths.v6i2.8745
Z. M. Mahdi, S. H. Mahmood, and N. N. Baqer, ‘Detection of resistance genes (gyrA, qepA, drf1, drf17) for E. coli in Iraqi aquatic environment’, Baghdad Science Journal, vol. 21, no. 2, p. 328, 2024, doi: 10.21123/bsj.2023.7782. DOI: https://doi.org/10.21123/bsj.2023.7782
현지서 et al., ‘Trend of b-lactam Resistance in Escherichia coli and Klebsiella pneumoniae Bacteremia and Clinical Char-acteristics of Cefotaxime-susceptible Extended-spectrum b-lactamase-producing Isolates’, Korean Journal of Healthcare-associated Infection Control and Prevention, vol. 28, no. 1, pp. 126–134, 2023, doi: 10.14192/kjicp.2023.28.1.126. DOI: https://doi.org/10.14192/kjicp.2023.28.1.126
S. Afsharikhah, R. Ghanbarpour, P. Mohseni, N. Adib, M. Bagheri, and M. Jajarmi, ‘High prevalence of β-lactam and fluoroquinolone resistance in various phylotypes of Escherichia coli isolates from urinary tract infections in Jiroft city, Iran’, BMC Microbiology, vol. 23, no. 1, p. 114, 2023, doi: 10.1186/s12866-023-02860-7. DOI: https://doi.org/10.1186/s12866-023-02860-7
K. El Bazi, M. Miloudi, Y. El Kamouni, S. Zouhair, and L. Arsalane, ‘Tigecycline susceptibility among multi-drug resistant bacteria: A 7-year retrospective study’, GSC Advanced Research and Reviews, vol. 11, no. 01, pp. 79–83, 2022, doi: 10.30574/gscarr.2022.11.1.0096. DOI: https://doi.org/10.30574/gscarr.2022.11.1.0096
Z. Yan et al., ‘MALDI-TOF MS combined with AUC method for tigecycline susceptibility testing in Escherichia coli’, JAC-Antimicrobial Resistance, vol. 6, no. 2, p. dlad119, 2024, doi: 10.1093/jacamr/dlad119. DOI: https://doi.org/10.1093/jacamr/dlad119
L. Korczak et al., ‘Molecular mechanisms of tigecycline-resistance among Enterobacterales’, Frontiers in Cellular and Infection Microbiology, vol. 14, p. 1289396, 2024, doi: 10.3389/fcimb.2024.1289396. DOI: https://doi.org/10.3389/fcimb.2024.1289396
Downloads
How to Cite
Article Metrics
Published
Issue
Section
License
Copyright (c) 2025 Lalan Rebaz Mohammed, Taib Ahmed Hama Soor (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.