A Performance-Driven Enhancement of the Mud Ring Algorithm for Global Optimization Challenges

https://doi.org/10.24017/science.2025.2.13

Abstract views: 0 / PDF downloads: 0

Authors

  • Shabaz Kawa Ali Department of Computer Science, College of Science, Charmo University, Sulaymaniyah, Iraq | Information Technology Department, Kurdistan Technical Institute, Sulaymaniyah, Iraq. https://orcid.org/0009-0004-5405-4052
  • Azad Abdullah Ameen Department of Software Engineering, College of Engineering and Computational Science, Charmo University, Sulaymaniyah, Iraq. https://orcid.org/0000-0001-9350-2330

Abstract

Nowadays, real-world optimization problems are becoming increasingly complex tasks, prompting the development of nature-inspired algorithms that mimic biological phenomena to improve search performance and solution quality. The Mud Ring Algorithm (MRA), inspired by the cooperative hunting behavior of bottlenose dolphins, has shown promise but remains sensitive to parameter settings, especially when balancing exploration and exploitation. To address these limitations, this paper proposes the Enhanced Mud Ring Algorithm (EMRA), which introduces a novel mechanism to more effectively manage the exploration-exploitation tradeoff. This modification allows the algorithm to escape local minima and explore the solution space more effectively. Numerical experiments on some standard benchmark functions as well as the difficult Congress on Evolutionary Computation 2019 benchmark suite show that EMRA outperforms the original MRA in terms of accuracy performance and computational cost, especially when dealing with high-dimension and multi-peak functions. In addition, EMRA was used in three complex engineering optimization problem designs (welded beam, pressure vessel, and tension spring), and the results were found to be more accurate and reliable than MRA. These results validate the strength and applicability of EMRA as a general optimization tool to tackle complex problems from many different disciplines, including real-world problems requiring the exhaustive exploration of multiple options. In summary, this study shows that EMRA is an effective extension of metaheuristic optimization that is applicable in real-world problems.

Keywords:

Metaheuristic, Optimization, MRA, Enhanced Mud Ring Algorithm (EMRA), Engineering Design

References

T. Hamadneh, K. Kaabneh, O. Alssayed, K. Eguchi, Z. Monrazeri, and M. Dehghani, “Far and near optimization: a new simple and effective metaphor-less optimization algorithm for solving engineering applications,” CMES-Computer Modeling in Engineering & Sciences, vol. 141, no. 2, pp. 1–10, 2024, doi: 10.32604/cmes.2024.053236. DOI: https://doi.org/10.32604/cmes.2024.053236

H. S. Abdulla, A. A. Ameen, S. I. Saeed, I. A. Mohammed, and T. A. Rashid, “MRSO: Balancing exploration and exploitation through modi-fied rat swarm optimization for global optimization,” Algorithms. 2024; 17(9):423, doi: 10.3390/a17090423. DOI: https://doi.org/10.3390/a17090423

H. M. Mohammed and T. A. Rashid, “FOX: A Fox-inspired optimization algorithm,” Applied Intelligence, vol. 53, no. 1, pp. 1030–1050, 2023, doi: https://doi.org/10.21203/rs.3.rs-1939478/v1. DOI: https://doi.org/10.1007/s10489-022-03533-0

D. O. Hasan and A. Aladdin, “Real-world applications of metaheuristic algorithms: a comprehensive review of the state-of-the-art,” Diyala Journal of Engineering Sciences, pp. 1–27, Jun. 2025, doi: 10.24237/djes.2024.18201. DOI: https://doi.org/10.24237/djes.2024.18201

D. Leiva, B. Ramos-Tapia, B. Crawford, R. Soto, and F. Cisternas-Caneo, “A novel approach to combinatorial problems: binary growth optimizer algorithm,” Biomimetics, vol. 9, no. 5, May 2024, doi: 10.3390/biomimetics9050283. DOI: https://doi.org/10.3390/biomimetics9050283

A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, “Harris hawks optimization: algorithm and applications,” Future Generation Computer Systems, vol. 97, pp. 849–872, Aug. 2019, doi: 10.1016/j.future.2019.02.028. DOI: https://doi.org/10.1016/j.future.2019.02.028

C. M. Rahman and T. A. Rashid, “A new evolutionary algorithm: learner performance based behavior algorithm,” Egyptian Informatics Journal, vol. 22, no. 2, pp. 213–223, Jul. 2021, doi: 10.1016/j.eij.2020.08.003. DOI: https://doi.org/10.1016/j.eij.2020.08.003

E. Tuba, I. Strumberger, T. Bezdan, N. Bacanin, and M. Tuba, “Classification and feature selection method for medical datasets by brain storm optimization algorithm and support vector machine,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 307–315. doi: 10.1016/j.procs.2019.11.289. DOI: https://doi.org/10.1016/j.procs.2019.11.289

A. S. Desuky, M. A. Cifci, S. Kausar, S. Hussain, and L. M. E. Bakrawy, “Mud ring algorithm: a new meta-heuristic optimization algorithm for solving mathematical and engineering challenges,” IEEE Access, 2022, vol. 10, pp. 50448–50466, doi: 10.1109/ACCESS.2022.3173401. DOI: https://doi.org/10.1109/ACCESS.2022.3173401

M. H. Zafar et al., “A novel MPPT controller based on mud ring optimization algorithm for centralized thermoelectric generator under dynamic thermal gradients,” Applied Sciences (Switzerland), vol. 13, no. 7, Apr. 2023, doi: 10.3390/app13074213. DOI: https://doi.org/10.3390/app13074213

G. Kulandaivelu, N. Verma, R. Arunachalam, and G. Muthusamy, “An innovative and adaptive deep Markov random field-based retailing prediction framework in big data analytics with improved mud ring optimizer,” Expert Systems with Applications, vol. 270, 2025, p. 126489, doi: 10.1016/J.ESWA.2025.126489. DOI: https://doi.org/10.1016/j.eswa.2025.126489

J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia, 1995, pp. 1942-1948 vol.4, doi: 10.1109/ICNN.1995.488968. DOI: https://doi.org/10.1109/ICNN.1995.488968

R. R. Irshad et al., “A multi-objective bee foraging learning-based particle swarm optimization algorithm for enhancing the security of healthcare data in cloud system,” IEEE Access, vol. 11, pp. 113410–113421, 2023, doi: 10.1109/ACCESS.2023.3265954. DOI: https://doi.org/10.1109/ACCESS.2023.3265954

Z. Shafiei Chafi and H. Afrakhte, “Short-term load forecasting using neural network and particle swarm optimization (pso) algorithm,” Mathematical Problems in Engineering, vol. 2021, doi: 10.1155/2021/5598267. DOI: https://doi.org/10.1155/2021/5598267

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in Engineering Software, vol. 69, pp. 46–61, 2014, doi: 10.1016/j.advengsoft.2013.12.007. DOI: https://doi.org/10.1016/j.advengsoft.2013.12.007

P. Hu, J. S. Pan, and S. C. Chu, “Improved binary grey wolf optimizer and its application for feature selection,” Knowledge-Based Systems, vol. 195, May 2020, doi: 10.1016/j.knosys.2020.105746. DOI: https://doi.org/10.1016/j.knosys.2020.105746

S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances in Engineering Software, vol. 95, pp. 51–67, May 2016, doi: 10.1016/j.advengsoft.2016.01.008. DOI: https://doi.org/10.1016/j.advengsoft.2016.01.008

R. Xu, C. Zhao, J. Li, J. Hu, and X. Hou, “A hybrid improved-whale-optimization–simulated-annealing algorithm for trajectory planning of quadruped robots,” Electronics (Switzerland), vol. 12, no. 7, Apr. 2023, doi: 10.3390/electronics12071564. DOI: https://doi.org/10.3390/electronics12071564

S. Mirjalili, “SCA: a sine cosine algorithm for solving optimization problems,” Knowledge-Based Systems, vol. 96, pp. 120–133, Mar. 2016, doi: 10.1016/j.knosys.2015.12.022. DOI: https://doi.org/10.1016/j.knosys.2015.12.022

T. ting Zhou and C. Shang, “Parameter identification of solar photovoltaic models by multi strategy sine–cosine algorithm,” Energy Science & Engineering, vol. 12, no. 4, pp. 1422–1445, Apr. 2024, doi: 10.1002/ese3.1673. DOI: https://doi.org/10.1002/ese3.1673

M. Ragab, A. A. Bahaddad, D. Hamed, A. Alkhayyat, D. Gupta, and R. F. Mansour, “Blockchain-driven privacy preserving electronic health records analysis using sine cosine algorithm with deep learning model,” Human-centric Computing and Information Sciences, vol. 14, 2024, doi: 10.22967/HCIS.2024.14.009.

S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili, “Salp swarm algorithm: a bio-inspired optimizer for engineering design problems,” Advances in Engineering Software, vol. 114, pp. 163–191, Dec. 2017, doi: 10.1016/j.advengsoft.2017.07.002. DOI: https://doi.org/10.1016/j.advengsoft.2017.07.002

Z. Yang, Y. Jiang, and W. C. Yeh, “Self-learning salp swarm algorithm for global optimization and its application in multi-layer perceptron model training,” Scientific Reports, vol. 14, no. 1, p. 27401, Dec. 2024, doi: 10.1038/s41598-024-77440-4. DOI: https://doi.org/10.1038/s41598-024-77440-4

M. S. Kiran, “TSA: Tree-seed algorithm for continuous optimization,” Expert Systems with Applications, vol. 42, no. 19, pp. 6686–6698, May 2015, doi: 10.1016/j.eswa.2015.04.055. DOI: https://doi.org/10.1016/j.eswa.2015.04.055

A. Beşkirli and İ. Dağ, “Parameter extraction for photovoltaic models with tree seed algorithm,” Energy Reports, vol. 9, pp. 174–185, Mar. 2023, doi: 10.1016/j.egyr.2022.10.386. DOI: https://doi.org/10.1016/j.egyr.2022.10.386

J. Liu, Y. Hou, Y. Li, and H. Zhou, “A multi-strategy improved tree–seed algorithm for numerical optimization and engineering optimization problems,” Scientific Reports, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-37958-5. DOI: https://doi.org/10.1038/s41598-023-37958-5

A. S. Mashaleh, N. F. Binti Ibrahim, M. A. Al-Betar, H. M. J. Mustafa, and Q. M. Yaseen, “Detecting spam email with machine learning optimized with harris hawks optimizer (HHO) algorithm,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 659–664. doi: 10.1016/j.procs.2022.03.087. DOI: https://doi.org/10.1016/j.procs.2022.03.087

D. T. Akl, M. M. Saafan, A. Y. Haikal, and E. M. El-Gendy, “IHHO: an improved harris hawks optimization algorithm for solving engineering problems,” Neural Computing and Applications, vol. 36, no. 20, pp. 12185–12298, Jul. 2024, doi: 10.1007/s00521-024-09603-3. DOI: https://doi.org/10.1007/s00521-024-09603-3

M. H. Qais, H. M. Hasanien, R. A. Turky, S. Alghuwainem, M. Tostado-Véliz, and F. Jurado, “Circle search algorithm: a geometry-based metaheuristic optimization algorithm,” Mathematics, vol. 10, no. 10, May 2022, doi: 10.3390/math10101626. DOI: https://doi.org/10.3390/math10101626

M. H. Qais, H. M. Hasanien, R. A. Turky, S. Alghuwainem, K. H. Loo, and M. Elgendy, “Optimal PEM fuel cell model using a novel circle search algorithm,” Electronics (Switzerland), vol. 11, no. 12, Jun. 2022, doi: 10.3390/electronics11121808. DOI: https://doi.org/10.3390/electronics11121808

S. Talatahari and M. Azizi, “Chaos game optimization: a novel metaheuristic algorithm,” Artificial Intelligence Review, vol. 54, no. 2, pp. 917–1004, Feb. 2021, doi: 10.1007/s10462-020-09867-w. DOI: https://doi.org/10.1007/s10462-020-09867-w

A. Mabrouk, A. Dahou, M. A. Elaziz, R. P. Díaz Redondo, and M. Kayed, “medical image classification using transfer learning and chaos game optimization on the internet of medical things,” Computational Intelligence and Neuroscience, vol. 2022, doi: 10.1155/2022/9112634. DOI: https://doi.org/10.1155/2022/9112634

L. M. El Bakrawy, N. Bailek, L. Abualigah, S. Urooj, and A. S. Desuky, “Feature selection based on mud ring algorithm for improving survival prediction of children undergoing hematopoietic stem-cell transplantation,” Mathematics, vol. 10, no. 22, Nov. 2022, doi: 10.3390/math10224197. DOI: https://doi.org/10.3390/math10224197

S. Sivanesh, G. Mani, S. Venkatraman, and R. Nandhini, “Air quality prediction using ensemble voting based deep learning with mud ring algorithm for intelligent transportation systems,” Global Nest Journal, vol. 25, no. 6, pp. 100–108, Aug. 2023, doi: 10.30955/gnj.004810. DOI: https://doi.org/10.30955/gnj.004810

V. S. Kona, M. Subramoniam and V. A. Binson, “An efficient smart-IoT-aided waste management system with optimal shortest path routing using mud ring algorithm,” IEEE International Conference on Recent Advances in Systems, 2023, doi: 10.1109/RASSE60029.2023.10363556. DOI: https://doi.org/10.1109/RASSE60029.2023.10363556

A. S. Alluhaidan, M. Maashi, M. A. Arasi, A. S. Salama, M. Assiri, and A. A. Alneil, “Mud ring optimization algorithm with deep learning model for disease diagnosis on ecg monitoring system,” Sensors, vol. 23, no. 15, Aug. 2023, doi: 10.3390/s23156675. DOI: https://doi.org/10.3390/s23156675

N. Maradona, and T. Jaya, “energy efficient trust routing based on mud 2 ring optimization in wireless sensor network 3.” doi: https://dx.doi.org/10.2139/ssrn.4753854. DOI: https://doi.org/10.2139/ssrn.4753854

M. SivaramKrishnan, R. Vidyalakshmi, R. Raguna, R. Shanmathi, R. Sharulatha, and K. Sujithra, “modulation of converter multiphase matrix for wind energy systems using a hybrid mud ring algorithm integrated with the elk herd optimizer,” 3rd International Conference on Automation, Computing and Renewable Systems, ICACRS 2024 - Proceedings, pp. 277–283, 2024, doi: 10.1109/ICACRS62842.2024.10841773. DOI: https://doi.org/10.1109/ICACRS62842.2024.10841773

K. J. Pradeep and P. K. Shukla, “Designing a novel network anomaly detection framework using multi-serial stacked network with optimal feature selection procedures over DDOS attacks,” International Journal of Intelligent Networks, vol. 6, pp. 1–13, Jan. 2025, doi: 10.1016/j.ijin.2024.11.001. DOI: https://doi.org/10.1016/j.ijin.2024.11.001

A. S. Desuky, S. Hussain, M. Akif Cifci, L. M. El Bakrawy, O. Mzoughi, and N. Kraiem, “parameter optimization based mud ring algorithm for improving the maternal health risk prediction,” IEEE Access, vol. 12, pp. 167245–167261, 2024, doi: 10.1109/ACCESS.2024.3495518. DOI: https://doi.org/10.1109/ACCESS.2024.3495518

A. Viktorin, R. Senkerik, M. Pluhacek, T. Kadavy and A. Zamuda, “Dish algorithm solving the CEC 2019 100-digit challenge,” 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 2019, pp. 1-6, doi: 10.1109/CEC.2019.8789936. DOI: https://doi.org/10.1109/CEC.2019.8789936

A. A. Ameen, T. A. Rashid, and S. Askar, “CDDO–HS: Child drawing development optimization–harmony search algorithm,” Applied Sciences, vol. 13, no. 9, May 2023, doi: 10.3390/app13095795. DOI: https://doi.org/10.3390/app13095795

A. A. Ameen, T. A. Rashid, and S. Askar, “MCDDO: overcoming challenges and enhancing performance in search optimization,” Aug. 04, 2023. doi: 10.21203/rs.3.rs-3219594/v1. DOI: https://doi.org/10.21203/rs.3.rs-3219594/v1

R. Eisinga, T. Heskes, B. Pelzer, and M. Te Grotenhuis, “Exact p-values for pairwise comparison of Friedman rank sums, with application to comparing classifiers,” BMC Bioinformatics, vol. 18, no. 1, Jan. 2017, doi: 10.1186/s12859-017-1486-2. DOI: https://doi.org/10.1186/s12859-017-1486-2

V. H. S. Pham, N. T. Nguyen Dang, and V. N. Nguyen, “Enhancing engineering optimization using hybrid sine cosine algorithm with Roulette wheel selection and opposition-based learning,” Scientific Reports, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-51343-w. DOI: https://doi.org/10.1038/s41598-024-51343-w

G. Dhiman, “SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications,” Knowledge-Based Systems, vol. 222, Jun. 2021, doi: 10.1016/j.knosys.2021.106926. DOI: https://doi.org/10.1016/j.knosys.2021.106926

E. S. M. El-Kenawy et al., “Novel meta-heuristic algorithm for feature selection, unconstrained functions and engineering problems,” IEEE Access, vol. 10, pp. 40536–40555, 2022, doi: 10.1109/ACCESS.2022.3166901. DOI: https://doi.org/10.1109/ACCESS.2022.3166901

H. Bayzidi, S. Talatahari, M. Saraee, and C. P. Lamarche, “Social network search for solving engineering optimization problems,” Computational Intelligence and Neuroscience, vol. 2021, 2021, doi: 10.1155/2021/8548639. DOI: https://doi.org/10.1155/2021/8548639

Downloads

How to Cite

[1]
S. K. Ali and A. A. Ameen, “A Performance-Driven Enhancement of the Mud Ring Algorithm for Global Optimization Challenges”, KJAR, vol. 10, no. 2, pp. 178–211, Oct. 2025, doi: 10.24017/science.2025.2.13.

Article Metrics

Published

07-10-2025