Comparative Efficacy of Apixaban, Dabigatran, Clopidogrel, and Aspirin Against Ferric-Chloride-Induced Thrombosis in the Carotid Arteries of Rats
https://doi.org/10.24017/science.2026.1.2
Abstract views: 0 / PDF downloads: 0Abstract
Carotid injury induced by ferric chloride (FeCl₃) is a model of arterial thrombosis for evaluating antithrombotic medications. Preclinical comparisons of different drug classes are scarce. This study compared the efficacy and safety of two direct oral anticoagulants (DOACs)—apixaban and dabigatran—and two antiplatelet agents—clopidogrel and aspirin. Adult male rats were randomly assigned to control, FeCl₃, and FeCl₃ with apixaban, dabigatran, clopidogrel, and aspirin. The endpoints were thrombus weight, occlusion time (OT), bleeding time (BT), capillary-tube clotting time (CT), and blood count. In addition, serum thromboxane B2 (TXB₂), D-dimer, malondialdehyde (MDA) and histopathological examination of the carotid artery were investigated. Compared to the controls, FeCl₃ caused a rapid, platelet-rich occlusion with increases in thrombus weight (7.18 mg), D-dimer (708.7 ng/mL), TXB₂ (549.7 pg/mL), and MDA (6.76 µmol/L). All treatments significantly prolonged OT compared with the FeCl₃ group. The DOACs (dabigatran and apixaban) demonstrated superior overall efficacy, prolonging OT and CT, reducing thrombus weight (2.53–3.97 mg) and D-dimer (563.8–591.8 ng/mL), and preserving arterial architecture, but with significant BT prolongation. Clopidogrel reduced thrombus weight (4.18 mg), TXB₂, D-dimer (552.2 ng/mL), and MDA (4.19 µmol/L) without affecting CT and with intermediate effects on BT. Aspirin showed relatively modest effects across all outcomes. Anticoagulants also reduced histological damage and normalised leukocyte counts. The efficacy of the anticoagulants reflected their mechanistic targets in FeCl₃-induced carotid thrombosis, following the gradient of dabigatran ≈ apixaban > clopidogrel >> aspirin. In this platelet-dominant model, clopidogrel was surprisingly effective, whereas aspirin had effects. DOACs offered the inhibition of thrombus formation, albeit at the expense of increased bleeding liability.
Keywords:
References
G. E. Raskob et al., “Thrombosis: a major contributor to global disease burden,” Arteriosclerosis, Thrombosis, and Vascular Biology., vol. 34, no. 11, pp. 2363–2371, Nov. 2014, doi: 10.1161/ATVBAHA.114.304488. DOI: https://doi.org/10.1161/ATVBAHA.114.304488
E. Behling-Kelly and R. Goggs, “Thrombotic disorders,” in Schalm's veterinary hematology, 7th ed., Wiley-Blackwell, 2022, pp. 821–836, doi: 10.1002/9781119500537. DOI: https://doi.org/10.1002/9781119500537.ch91
X. Lin et al., “Establishment of a modified and standardized ferric chloride-induced rat carotid artery thrombosis model,” ACS Omega, vol. 7, no. 10, pp. 8919–8927, Mar. 2022, doi: 10.1021/acsomega.1c07316. DOI: https://doi.org/10.1021/acsomega.1c07316
D. Barcellona and F. Marongiu, “The hemostatic system. Part 1,” Journal of Pediatric and Neonatal Individualized Medicine, vol. 9, no. 1, p. e090106, Jan. 2020, doi: 10.7363/090106.
T. Bonnard and C. E. Hagemeyer, “Ferric chloride-induced thrombosis mouse model on carotid artery and mesentery vessel,” Journal of Visualized Experiments, no. 100, p. e52838, 2015, doi: 10.3791/52838. DOI: https://doi.org/10.3791/52838-v
S. Konosic et al., “Intragastric application of aspirin, clopidogrel, cilostazol, and BPC 157 in rats: Platelet aggregation and blood clot,” Oxidative Medicine and Cellular Longevity., vol. 2019, p. 9084643, Dec. 2019, doi: 10.1155/2019/9084643. DOI: https://doi.org/10.1155/2019/9084643
S. Gosavi, G. Krishnan, and R. V. Acharya, “Aspirin vs clopidogrel: antiplatelet agent of choice for those with recent bleeding or at risk for gastrointestinal bleed,” Cureus, vol. 15, no. 4, Apr. 2023, doi: 10.7759/cureus.37890. DOI: https://doi.org/10.7759/cureus.37890
S. Anderer, “Study: bleeding risk with some blood thinners similar to aspirin,” Journal of the American Medical Association, vol. 333, no. 15, p. 1285, Apr. 2025, doi: 10.1001/jama.2025.1355. DOI: https://doi.org/10.1001/jama.2025.1355
D. J. Fitzgerald and G. A. Fitzgerald, “Historical lessons in translational medicine: cyclooxygenase inhibition and P2Y12 antagonism,” Circulation Research., vol. 112, no. 1, pp. 174–194, Jan. 2013, doi: 10.1161/CIRCRESAHA.111.300271. DOI: https://doi.org/10.1161/CIRCRESAHA.111.300271
A. Thomas et al., “Antiplatelet strategies following PCI: a review of trials informing current and future therapies”. Journal of the Society for Cardiovascular Angiography and Interventions, vol. 2, no. 3, p. 100607, Mar. 2023, doi: 10.1016/j.jscai.2023.100607. DOI: https://doi.org/10.1016/j.jscai.2023.100607
S. Heitmeier et al., “Pharmacological profile of asundexian, a novel, orally bioavailable inhibitor of factor XIa,” Journal of Thrombosis and Haemostasis, vol. 20, no. 6, pp. 1400–1411, Jun. 2022, doi: 10.1111/jth.15700. DOI: https://doi.org/10.1111/jth.15700
Q. Zhou et al., “Short-term antiplatelet versus anticoagulant therapy after left atrial appendage closure: a systematic review and meta-analysis,” Journal of Thrombosis and Thrombolysis, vol. 57, no. 2, pp. 194–203, Feb. 2024, doi: 10.1007/s11239-023-02919-2. DOI: https://doi.org/10.1007/s11239-023-02919-2
Y. H. Chan et al., “Efficacy and safety of apixaban, dabigatran, rivaroxaban, and warfarin in Asians with nonvalvular atrial fibrillation,” Journal of the American Heart Association, vol. 7, no. 8, p. e008150, Apr. 2018, doi: 10.1161/JAHA.117.008150. DOI: https://doi.org/10.1161/JAHA.117.008150
T. L. Lindahl et al., “Dabigatran attenuates the binding of thrombin to platelets – a novel mechanism of action,” Thrombosis and Haemostasis, vol. 125, no. 8, pp. 747–756, Aug. 2024, doi: 10.1055/a-2483-0107. DOI: https://doi.org/10.1055/a-2483-0107
J. C. Fredenburgh and J. I. Weitz, “New anticoagulants: moving beyond the direct oral anticoagulants,” Journal of Thrombosis and Haemostasis, vol. 19, no. 1, pp. 20–29, Jan. 2021, doi: 10.1111/jth.15126. DOI: https://doi.org/10.1111/jth.15126
M. Grymonprez, T. L. D. Backer, X. Bertels, S. Steurbaut, and L. Lahousse, “Long-term comparative effectiveness and safety of dabigatran, rivaroxaban, apixaban and edoxaban in patients with atrial fibrillation: A nationwide cohort study,” Frontiers in Pharmacology, vol. 14, p. 1125576, Feb. 2023, doi: 10.3389/fphar.2023.1125576. DOI: https://doi.org/10.3389/fphar.2023.1125576
J. C. Fredenburgh and J. I. Weitz, “Factor XI as a target for new anticoagulants,” Haemostaseologie, vol. 41, no. 02, pp. 104–110, Apr. 2021, doi: 10.1055/a-1384-3715. DOI: https://doi.org/10.1055/a-1384-3715
M. Kovač, “D-dimer: role in the hemostasis system and its application in specific clinical settings,” Galician Medical Journal., vol. 1, no. 4, pp. 68–76, Dec. 2022, doi: 10.5937/Galmed2204072K. DOI: https://doi.org/10.5937/Galmed2204072K
Z. Tang, S. Kattula, L. A. Holle, B. C. Cooley, F-C, Lin, and A. S. Wolberg, “Factor XIII deficiency does not prevent FeCl3-induced carotid artery thrombus formation in mice,” Research and Practice in Thrombosis and Haemostasis, vol. 4, no. 1, pp. 111-116, Nov. 2019, doi: 10.1002/rth2.12278. DOI: https://doi.org/10.1002/rth2.12278
S. Ayyoub et al., “Thrombosis models: an overview of common in vivo and in vitro models of thrombosis,” International Journal of Molecular Sciences, vol. 24, no. 3, p. 2569, Jan. 2023, doi: 10.3390/ijms24032569. DOI: https://doi.org/10.3390/ijms24032569
D. Moj, H. Maas, A. Schaeftlein, N. Hanke, J. D. Gómez-Mantilla, and T. Lehr, “A comprehensive whole-body physiologically based pharmacokinetic model of dabigatran etexilate, dabigatran and dabigatran glucuronide in healthy adults and renally impaired patients,” Clinical Pharmacokinetics, vol. 58, no. 12, pp. 1577–1593, Dec. 2019, doi: 10.1007/s40262-019-00776-y. DOI: https://doi.org/10.1007/s40262-019-00776-y
A. Shaito et al., “Oxidative stress-induced endothelial dysfunction in cardiovascular diseases,” Frontiers in Bioscience (Landmark Edition), vol. 27, no. 3, p. 105, Mar. 2022, doi: 10.31083/j.fbl2703105. DOI: https://doi.org/10.31083/j.fbl2703105
I. Lee et al., “Ref-1 protects against FeCl(3)-induced thrombosis and tissue factor expression via the GSK3β-NF-κB pathway,” Korean Journal of Physiology and Pharmacology, vol. 25, no. 1, pp. 59–68, Jan. 2021, doi: 10.4196/kjpp.2021.25.1.59. DOI: https://doi.org/10.4196/kjpp.2021.25.1.59
C. E. Frost, V. Ly, and S. M. Garonzik, “Apixaban pharmacokinetics and pharmacodynamics in subjects with mild or moderate hepatic impairment,” Drugs in R&D, vol. 21, no. 4, pp. 375–384, Dec. 2021, doi: 10.1007/s40268-021-00359-y. DOI: https://doi.org/10.1007/s40268-021-00359-y
A. Eckly et al., “Mechanisms underlying FeCl3‐induced arterial thrombosis,” Journal of Thrombosis and Haemostasis, vol. 9, no. 4, pp. 779–789, Apr. 2011, doi: 10.1111/j.1538-7836.2011.04218.x. DOI: https://doi.org/10.1111/j.1538-7836.2011.04218.x
N. A. Hilkens et al., “Balancing benefits and risks of long-term antiplatelet therapy in noncardioembolic transient ischemic attack or stroke,” Stroke, vol. 52, no. 10, pp. 3258–3265, Oct. 2021, doi: 10.1161/STROKEAHA.120.031755. DOI: https://doi.org/10.1161/STROKEAHA.120.031755
N. Chan, M. Sobieraj-Teague, and J. W. Eikelboom, “Direct oral anticoagulants: evidence and unresolved issues,” The Lancet, vol. 396, no. 10264, pp. 1767–1776, Nov. 2020, doi: 10.1016/S0140-6736(20)32439-9. DOI: https://doi.org/10.1016/S0140-6736(20)32439-9
W. Byon, S. Garonzik, R. A. Boyd, and C. E. Frost, “Apixaban: a clinical pharmacokinetic and pharmacodynamic review,” Clinical Pharmacokinetics, vol. 58, no. 10, pp. 1265–1279, Oct. 2019, doi: 10.1007/s40262-019-00775-z. DOI: https://doi.org/10.1007/s40262-019-00775-z
J. K. Duong, R. A. Nand, A. Patel, O. D. Pasqua, and A. S. Gross, “A physiologically based pharmacokinetic model of clopidogrel in populations of European and Japanese ancestry: an evaluation of CYP2C19 activity,” Pharmacology Research & Perspectives, vol. 10, no. 2, p. e00946, Apr. 2022, doi: 10.1002/prp2.946. DOI: https://doi.org/10.1002/prp2.946
R. Dwivedi and V. H. Pomin, “Marine antithrombotics,” Marine Drugs, vol. 18, no. 10, p. 514, Oct. 2020, doi: 10.3390/md18100514. DOI: https://doi.org/10.3390/md18100514
X. Guo et al., “Thrombus-specific/responsive biomimetic nanomedicine for spatiotemporal thrombolysis and alleviation of myocardial ischemia/reperfusion injury,” Journal of Nanobiotechnology, vol. 20, no. 1, p. 531, Dec. 2022, doi: 10.1186/s12951-022-01686-1. DOI: https://doi.org/10.1186/s12951-022-01686-1
S. Haro Girón et al., “Prognostic value of malondialdehyde (MDA) in the temporal progression of chronic spinal cord injury,” Journal of Personalized Medicine, vol. 13, no. 4, p. 626, Apr. 2023, doi: 10.3390/jpm13040626. DOI: https://doi.org/10.3390/jpm13040626
A. Rana, E. Westein, B. Niego, and C. E. Hagemeyer, “Shear-dependent platelet aggregation: mechanisms and therapeutic opportunities,”Frontiers in Cardiovascular Medicine, vol. 6, p. 141, Sep. 2019, doi: 10.3389/fcvm.2019.00141. DOI: https://doi.org/10.3389/fcvm.2019.00141
J. Steffel et al., “2021 European Heart Rhythm Association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation,” Europace, vol. 23, no. 10, pp. 1612–1676, Oct. 2021, doi: 10.1093/europace/euab065. DOI: https://doi.org/10.1093/europace/euab157
C. Patrono, B. Coller, G. A. FitzGerald, J. Hirsh, and G. Roth, “Platelet-active drugs: the relationships among dose, effectiveness, and side effects: the seventh ACCP conference on antithrombotic and thrombolytic therapy,”Chest, vol. 126, no. 3 Suppl, Sep. 2004, pp. 234S–264S.doi: 10.1378/chest.126.3_suppl.234S. DOI: https://doi.org/10.1378/chest.126.3_suppl.234S
L. Stanger, A. Yamaguchi, and M. Holinstat, “Antiplatelet strategies: past, present, and future,” Journal of Thrombosis and Haemostasis, vol. 21, no. 12, pp. 3317–3328, Dec. 2023, doi: 10.1016/j.jtha.2023.09.013. DOI: https://doi.org/10.1016/j.jtha.2023.09.013
Y. Pan, B. Liu, J. Liu, W. Zhuang, G. He, and M. Lan, “Clopidogrel-induced neutropenia in an 80-year-old patient with chronic kidney disease who underwent percutaneous coronary intervention: a case report and literature review,” BMC Cardiovascular Disorders, vol. 22, no. 1, p. 40, Feb. 2022, doi: 10.1186/s12872-022-02490-3. DOI: https://doi.org/10.1186/s12872-022-02490-3
Y. Shim et al., “Characterization of ferric chloride-induced arterial thrombosis model of mice and the role of red blood cells in thrombosis acceleration,” Yonsei Medical Journal, vol. 62, no. 11, pp. 1032–1041, Nov. 2021, doi: 10.3349/ymj.2021.62.11.1032. DOI: https://doi.org/10.3349/ymj.2021.62.11.1032
L. Pezhman, A. Tahrani, and M. Chimen, “Dysregulation of leukocyte trafficking in type 2 diabetes: mechanisms and potential therapeutic avenues,” Frontiers in Cell and Developmental Biology, vol. 9, p. 624184, Feb. 2021, doi: 10.3389/fcell.2021.624184. DOI: https://doi.org/10.3389/fcell.2021.624184
M. López-Riera et al., “Activation of the constitutive androstane receptor inhibits leukocyte adhesiveness to dysfunctional endothelium,” International Journal of Molecular Sciences, vol. 22, no. 17, p. 9267, Aug. 2021, doi: 10.3390/ijms22179267. DOI: https://doi.org/10.3390/ijms22179267
L. Mendes. M. Queiroz, and C. M. Sena, “Melatonin and vascular function,” Antioxidants, vol. 13, no. 6, p. 747, Jun. 2024, doi: 10.3390/antiox13060747. DOI: https://doi.org/10.3390/antiox13060747
X. Zhang et al., , “Melatonin as a therapeutic agent for alleviating endothelial dysfunction in cardiovascular diseases: Emphasis on oxidative stress,” Biomedicine and Pharmacotherapy, vol. 167, 2023, part. 115475, doi: 10.1016/j.biopha.2023.115475. DOI: https://doi.org/10.1016/j.biopha.2023.115475
Z. T. Hasan, M. Q. Y. A. Al Atrakji, and A. K. Mehuaiden, “The Effect of melatonin on thrombosis, sepsis and mortality rate in COVID-19 patients,” International Journal of Infectious Diseases, vol. 114, pp. 79–84, Jan. 2022, doi: 10.1016/j.ijid.2021.10.012. DOI: https://doi.org/10.1016/j.ijid.2021.10.012
H. Emms and G. P. Lewis, “The effect of synthetic ovarian hormones on an in vivo model of thrombosis in the rat,” British Journal of Pharmacology, vol. 84, no. 1, pp. 243–248, 1985.
C. M. Alvarado, J. A. Diaz, A. E. Hawley, S. K. Wrobleski, R. E. Sigler, and D. D. Myers Jr, “Male mice have increased thrombotic potential: sex differences in a mouse model of venous thrombosis,” Thrombosis Research, vol. 127, no. 5, pp. 478–486, Feb. 2011, doi: 10.1016/j.thromres.2011.01.004. DOI: https://doi.org/10.1016/j.thromres.2011.01.004
Barr, J. D., A. K. Chauhan, G. V. Schaeffer, J. K. Hansen, and D. G. Motto, “Red blood cells mediate the onset of thrombosis in the ferric chloride murine model,” Blood, vol. 121, no. 18, pp. 3733–3741, May 2013, doi: 10.1182/blood-2012-11-468983. DOI: https://doi.org/10.1182/blood-2012-11-468983
G. Veres et al., “Aspirin reduces ischemia-reperfusion injury induced endothelial cell damage of arterial grafts in a rodent model,” Antioxidants, vol. 11, no. 2, p. 177, 2022, doi: 10.3390/antiox11020177. DOI: https://doi.org/10.3390/antiox11020177
S. N. Whitehead, N. A. Bayona, G. Cheng, G. V. Allen, V. C. Hachinski, and D. F. Cechetto, “Effects of triflusal and aspirin in a rat model of cerebral ischemia,” Stroke, vol. 38, no. 2, pp. 381–387, 2007, doi: 10.1161/01.STR.0000254464.05561.72. DOI: https://doi.org/10.1161/01.STR.0000254464.05561.72
W. A. Schumacher et al., “Biomarker optimization to track the antithrombotic and hemostatic effects of clopidogrel in rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 322, no. 1, pp. 369–377, 2007, doi: 10.1124/jpet.106.119156. DOI: https://doi.org/10.1124/jpet.106.119156
S. Ma et al., “The herb-drug interaction of clopidogrel and Xuesaitong dispersible tablet by modulation of the pharmacodynamics and liver carboxylesterase 1A metabolism,” Evidence-Based Complementary and Alternative Medicine, vol. 2018, p. 5651989, Oct. 2018, doi: 10.1155/2018/5651989. DOI: https://doi.org/10.1155/2018/5651989
He, K., et al., “Preclinical pharmacokinetics and pharmacodynamics of apixaban, a potent and selective factor Xa inhibitor,” European Journal of Drug Metabolism and Pharmacokinetics., vol. 36, no. 3, pp. 129–139, Sep. 2011, doi: 10.1007/s13318-011-0037-x. DOI: https://doi.org/10.1007/s13318-011-0037-x
W. Li, T. M. McIntyre, and R. L. Silverstein, “Ferric chloride-induced murine carotid arterial injury: A model of redox pathology,” Redox Biology, vol. 1, no. 1, pp. 50–55, Jan. 2013, doi: 10.1016/j.redox.2012.11.001. DOI: https://doi.org/10.1016/j.redox.2012.11.001
A. Jakimczuk et al., “Monitoring of anticoagulant activity of dabigatran and rivaroxaban in the presence of heparins,” Journal of Clinical Medicine, vol. 11, no. 8, Apr. 2022, doi: 10.3390/jcm11082236. DOI: https://doi.org/10.3390/jcm11082236
S. Schüpke et al., “Ticagrelor or prasugrel in patients with acute coronary syndromes,” The New England Journal of Medicine, vol. 381, no. 16, pp. 1524–1534, Oct. 2019, doi: 10.1056/NEJMoa1908973. DOI: https://doi.org/10.1056/NEJMe1911207
C. T. Ruff et al., “Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials,” The Lancet, vol. 383, no. 9921, pp. 955–962, Mar. 2014, doi: 10.1016/S0140-6736(13)62343-0. DOI: https://doi.org/10.1016/S0140-6736(13)62343-0
W. F. McIntyre, J. S. Healey, P. J Devereaux, and D. Conen, “A call for randomized trials of oral anticoagulation for patients with post-operative atrial fibrillation,” Journal of the American College of Cardiology, vol. 73, no. 9, p. 1105, Mar. 2019, doi: 10.1016/j.jacc.2018.11.057. DOI: https://doi.org/10.1016/j.jacc.2018.11.057
M. Karel, B. Hechler, M. Kuijpers, and J. Cosemans,“Atherosclerotic plaque injury-mediated murine thrombosis models: advantages and limitations,” Platelets, vol. 31, no. 4, pp. 439–446, Apr. 2020, doi: 10.1080/09537104.2019.1708884. DOI: https://doi.org/10.1080/09537104.2019.1708884
B. Hindley, G. Y. H. Lip, A. P. McCloskey, and P. E. Penson, “Pharmacokinetics and pharmacodynamics of direct oral anticoagulants,” Expert Opinion on Drug Metabolism and Toxicology, vol. 19, no. 12, pp. 911–923, Dec. 2023, doi: 10.1080/17425255.2023.2287472. DOI: https://doi.org/10.1080/17425255.2023.2287472
Y. Ichikawa et al., “Elevated D-Dimer Levels Predict a Poor Outcome in Critically Ill Patients,” Clinical and Applied Thrombosis/Hemostasis, vol. 26, 2020, doi: 10.1177/1076029620973084. DOI: https://doi.org/10.1177/1076029620973084
C. P. D. M. de Breet et al., “Thrombin generation as a method to identify the risk of bleeding in high clinical-risk patients using dual antiplatelet therapy,” Frontiers in Cardiovascular Medicine, vol. 10, n.. 8, p. 679934, Jun. 2021, doi:10.3389/fcvm.2021.679934. DOI: https://doi.org/10.3389/fcvm.2021.679934
L. Cheng et al., “D-dimer as a predictor of cardiovascular outcomes in patients with diabetes mellitus,” BMC Cardiovascular Disorders, vol. 22, no. 1, p. 82, Mar.. 2022, doi: 10.1186/s12872-022-02531-x. DOI: https://doi.org/10.1186/s12872-022-02531-x
P-H. Chen. M. Schwade, G. Sharma, and V. J. B. Robinson, “Value of D-dimer in risk stratification for thromboembolism in patients with atrial fibrillation and low CHA2DS2-VASc score,” Journal of Investigative Medicine High Impact Case Reports, vol. 11, 2023, doi: 10.1177/23247096231165740. DOI: https://doi.org/10.1177/23247096231165740
A. Hartley et al., “Depletion of homeostatic antibodies against malondialdehyde-modified low-density lipoprotein correlates with adverse events in major vascular surgery,” Antioxidants, vol. 11, no. 2, p. 271, jan. 2022, doi: 10.3390/antiox11020271. DOI: https://doi.org/10.3390/antiox11020271
L. Falco et al., “Antioxidant properties of oral antithrombotic therapies in atherosclerotic disease and atrial fibrillation,” Antioxidants, vol. 12, no. 6, p. 1185, May. 2023, doi: 10.3390/antiox12061185. DOI: https://doi.org/10.3390/antiox12061185
D. L. Tao, S. T. Yunga, C. D. Williams, and O. J. T. McCarty, “Aspirin and antiplatelet treatments in cancer,” Blood, vol. 137, no. 23, pp. 3201–3211, Jun. 2021, doi: 10.1182/blood.2019003977. DOI: https://doi.org/10.1182/blood.2019003977
J. Bang and W. K. Jeon, “Mumefural improves blood flow in a rat model of FeCl3-induced arterial thrombosis,” Nutrients, vol. 12, no. 12, p. 3795, Dec. 2020, doi: 10.3390/nu12123795. DOI: https://doi.org/10.3390/nu12123795
V. Paar et al., “Influence of dabigatran on pro-inflammatory cytokines, growth factors and chemokines - slowing the vicious circle of coagulation and inflammation,” Life Sciences, vol. 262, p. 118474, Dec. 2020, doi: 10.1016/j.lfs.2020.118474. DOI: https://doi.org/10.1016/j.lfs.2020.118474
E. Woźniak et al., “The protective effect of dabigatran and rivaroxaban on DNA oxidative changes in a model of vascular endothelial damage with oxidized cholesterol,” International Journal of Molecular Sciences, vol. 21, no. 6, p. 1953, Mar. 2020, doi: 10.3390/ijms21061953. DOI: https://doi.org/10.3390/ijms21061953
M. Hussain and G. J. C. Liu, “Eosinophilic asthma: pathophysiology and therapeutic horizons,” Cells, vol. 13, no. 5, p. 384, Mar. 2024, doi: 10.3390/cells13050384. DOI: https://doi.org/10.3390/cells13050384
H. J. Kim and Y. Jung, “The emerging role of eosinophils as multifunctional leukocytes in health and disease,” Immune Network, vol. 20, no. 3, p. e24, Jun. 2020, doi: 10.4110/in.2020.20.e24. DOI: https://doi.org/10.4110/in.2020.20.e24
H.-W. Park et al., “Effects of monotherapy with clopidogrel vs. aspirin on vascular function and hemostatic measurements in patients with coronary artery disease: the prospective, crossover I-LOVE-MONO trial,” Journal of Clinical Medicine, vol. 10, no. 12, p. 2720, Jun. 2021, doi: 10.3390/jcm10122720. DOI: https://doi.org/10.3390/jcm10122720
F. M. C. Pinto and A. Victorino, “Clopidogrel-induced neutropenia in an 84-year-old patient: a case report,” Hematology, Transfusion and Cell Therapy, vol. 44, no. 2, pp. 256–258, Apr.–Jun. 2022, doi: 10.1016/j.htct.2020.07.002. DOI: https://doi.org/10.1016/j.htct.2020.07.002
S. Joshi et al., “Ferric chloride-induced arterial thrombosis and sample collection for 3D electron microscopy analysis,” Journal of Visualized Experiments, no. 193, p. e64985, Mar. 2023, doi: 10.3791/64985. DOI: https://doi.org/10.3791/64985
J. A. Diaz et al., “Choosing a mouse model of venous thrombosis: a consensus assessment of utility and application,” Journal of Thrombosis and Haemostasis, vol. 17, no. 4, pp. 699–707, Apr. 2019, doi: 10.1111/jth.14413. DOI: https://doi.org/10.1111/jth.14413
L. Wang et al., “Tissue distribution and elimination of [14C] apixaban in rats,” Drug Metabolism and Disposition, vol. 39, no. 2, pp. 256–264, 2011, doi: 10.1124/dmd.110.036442. DOI: https://doi.org/10.1124/dmd.110.036442
Ciliano, J. C., et al. “Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach,” Blood, vol. 126, no. 6, Aug. 2015, pp. 817–824, doi: 10.1182/blood-2015-02-628594. DOI: https://doi.org/10.1182/blood-2015-02-628594
R. H. van Gorp et al., “Off-target effects of oral anticoagulants – vascular effects of vitamin K antagonist and non-vitamin K antagonist oral anticoagulant dabigatran etexilate,” Journal of Thrombosis and Haemostasis, vol. 19, no. 5, pp. 1348–1363, May. 2021, doi: 10.1111/jth.15289. DOI: https://doi.org/10.1111/jth.15289
Downloads
How to Cite
Article Metrics
Published
Issue
Section
License
Copyright (c) 2026 Hawkar H. Arif, Ismail M. Maulood (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.










