Pharmacological Inhibition of Hsp70 to Degrade c-FLIP: A Novel Indirect Approach for Cancer Therapy: A Narrative Review
https://doi.org/10.24017/
Abstract views: 0 / PDF downloads: 0Abstract
The cellular FLICE-inhibitory protein (c-FLIP) is a master regulator of pro-grammed cell death, functioning as a key suppressor of extrinsic apoptosis mediated by death receptor signaling. Its persistent overexpression is a hall-mark of numerous cancers, contributing directly to tumorigenesis, therapy resistance, and immune evasion. However, direct pharmacological targeting of c-FLIP has proven exceptionally challenging because of its unstructured protein-interaction domains. This review explores an innovative indirect strategy: inhibiting the molecular chaperone heat shock protein 70 (Hsp70) to promote the proteasomal degradation of c-FLIP. Hsp70 is frequently overex-pressed in malignancies and is critically involved in stabilizing oncoproteins, such as c-FLIP, shielding them from ubiquitination and degradation. A syn-thesis of compelling evidence was presented to demonstrate that diverse Hsp70 inhibitors—including ATP-competitive agents (VER-155008), allosteric inhibitors (PES), and co-chaperone disruptors (MAL3-101)—effectively de-plete c-FLIP levels. This depletion robustly re-sensitizes resistant cancer cells to apoptosis, which is induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL). This overcomes conventional chemoresistance and potentially restores immune-mediated cytotoxicity by dismantling a key protective mechanism. This article details the molecular mechanisms of the Hsp70-c-FLIP axis, evaluates the current landscape of Hsp70-targeted therapeutics, and discusses the significant promise and chal-lenges—such as isoform selectivity and drug development hurdles—of ex-ploiting this chaperone-client relationship. The present review concludes that targeting Hsp70 to disrupt c-FLIP stability represents a highly promising and indirect anticancer strategy, warranting extensive further investigation in both preclinical models and clinical settings.
Keywords:
References
B. A. Carneiro and W. S. El-Deiry, "Targeting apoptosis in cancer therapy," Nature Reviews Clinical Oncology, vol. 17, no. 7, pp. 395-417, 2020. doi: 10.1038/s41571-020-0341-y.
W. S. Hashim, A. H. Jumaa, N. T. Alsaadi, and A. G. Arean, "Physiological study comprising the sequelae of mag-netic radiation on human," Indian Journal of Forensic Medicine & Toxicology, vol. 14, no. 2, pp. 421-425, 2020. doi: 10.37506/ijfmt.v14i2.2828.
D. de Miguel, J. Lemke, A. Anel, H. Walczak, and L. Martinez-Lostao, "Onto better TRAILs for cancer treatment," Cell Death & Differentiation, vol. 23, no. 5, pp. 733-747, 2016. doi: 10.1038/cdd.2015.174.
A. H. Jumaa, A. S. Jarad, and W. S. H. Al Uboody, "The effect of esomeprazole on cell line human cervical cancer," Medico-Legal Update, vol. 20, no. 1, pp. 646-652, 2020. doi: 10.37506/mlu.v20i1.437.
A. R. Safa, "Roles of c-FLIP in apoptosis, necroptosis, and autophagy," Journal of Carcinogenesis & mutagenesis, p. 003, 2013. doi: 10.4172/2157-2518.S6-003.
A. R. Safa and K. E. Pollok, "Targeting the anti-apoptotic protein c-FLIP for cancer therapy," Cancers, vol. 3, no. 2, pp. 1639-1671, 2011. doi: 10.3390/cancers3021639.
S. Shirley and O. Micheau, "Targeting c-FLIP in cancer," Cancer Letters, vol. 332, no. 2, pp. 141-150, 2013. doi: 10.1016/j.canlet.2010.10.009.
A. H. Jumaa, W. S. H. Al Uboody, and A. M. Hady, "Esomeprazole and Amygdalin combination cytotoxic effect on human cervical cancer cell line (Hela cancer cell line)," Journal of Pharmaceutical Sciences and Research, vol. 10, no. 9, pp. 2236-2241, 2018. [Online]. Available: https://www.pharmainfo.in/jpsr/Documents/Volumes/vol10Issue09/jpsr10091825.pdf. [Accessed January 9, 2026].
J. Wu, T. Liu, Z. Rios, Q. Mei, X. Lin, and S. Cao, "Heat shock proteins and cancer," Trends in Pharmacological Scienc-es, vol. 38, no. 3, pp. 226-256, 2017. doi: 10.1016/j.tips.2016.11.009.
X. Zhao et al., "Bortezomib induces caspase-dependent apoptosis in Hodgkin lymphoma cell lines and is associated with reduced c-FLIP expression: a gene expression profiling study with implications for potential combination ther-apies," Leukemia Research, vol. 32, no. 2, pp. 275-285, 2008. doi: 10.1016/j.leukres.2007.05.024.
A. Hoter and H. Y. Naim, "The functions and therapeutic potential of heat shock proteins in inflammatory bowel disease—an update," International Journal of Molecular Sciences, vol. 20, no. 21, p. 5331, 2019. doi: 10.3390/ijms20215331.
H. H. Cheung, D. J. Mahoney, E. C. LaCasse, and R. G. Korneluk, "Down-regulation of c-FLIP Enhances death of cancer cells by smac mimetic compound," Cancer Research, vol. 69, no. 19, pp. 7729-7738, 2009. doi: 10.1158/0008-5472.CAN-09-1794.
K. Seyrek, J. Espe, E. Reiss, and I. N. Lavrik, "The crosstalk of apoptotic and non-apoptotic signaling in CD95 sys-tem," Cells, vol. 13, no. 21, p. 1814, 2024. doi: 10.3390/cells13211814.
N. V. Ivanisenko et al., "Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks," Trends in Cancer, vol. 8, no. 3, pp. 190-209, 2022. doi: 10.1016/j.trecan.2021.12.002.
A. Guerrache and O. Micheau, "TRAIL-non-apoptotic signalling," 2024. doi: 10.3390/cells13060521.
D. R. Green, "Caspase activation and inhibition," Cold Spring Harbor Perspectives in Biology, vol. 14, no. 8, p. a041020, 2022. doi: 10.1101/cshperspect.a041020.
P. Davidovich, C. A. Higgins, Z. Najda, D. B. Longley, and S. J. Martin, "cFLIPL acts as a suppressor of TRAIL-and Fas-initiated inflammation by inhibiting assembly of caspase-8/FADD/RIPK1 NF-κB-activating complexes," Cell Re-ports, vol. 42, no. 12, 2023. doi: 10.1016/j.celrep.2023.113476.
W.-d. Wang et al., "c-FLIP promotes drug resistance in non-small-cell lung cancer cells via upregulating FoxM1 ex-pression," Acta Pharmacologica Sinica, vol. 43, no. 11, pp. 2956-2966, 2022. doi: 10.1038/s41401-022-00905-7.
C. Frusteri, "Targeting immune dysregulation mediated by FLIP and putative FLIP-related pathways to develop new therapeutic approaches," 2022. 07.13 Doctoral Thesis.
M. A. Hughes et al., "Co-operative and hierarchical binding of c-FLIP and caspase-8: a unified model defines how c-FLIP isoforms differentially control cell fate," Molecular Cell, vol. 61, no. 6, pp. 834-849, 2016. doi: 10.1016/j.molcel.2016.02.023.
Y. Tsuchiya, O. Nakabayashi, and H. Nakano, "FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP," International Journal of Molecular Sciences, vol. 16, no. 12, pp. 30321-30341, 2015. doi: 10.3390/ijms161226232.
A. Guerrache and O. Micheau, "TNF-related apoptosis-inducing ligand: non-apoptotic signalling," Cells, vol. 13, no. 6, p. 521, 2024. doi: 10.3390/cells13060521.
A. Safa, "c-FLIP, a master anti-apoptotic regulator," Experimental Oncology, vol. 34, no. 3, p. 176, 2012. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC4817998/pdf/nihms771427.pdf. [Accessed January 9, 2026].
K. Newton et al., "cFLIP suppresses caspase-1-and MLKL-independent perinatal lethality driven by auto-processing impaired caspase-8 D387A," Cell Death & Differentiation, pp. 1-11, 2025. doi: 10.1038/s41418-025-01650-0.
L. K. Hillert et al., "Dissecting DISC regulation via pharmacological targeting of caspase-8/c-FLIPL heterodimer," Cell Death & Differentiation, vol. 27, no. 7, pp. 2117-2130, 2020. doi: 10.1038/s41418-020-0489-0.
S. Von Karstedt, A. Montinaro, and H. Walczak, "Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy," Nature Reviews Cancer, vol. 17, no. 6, pp. 352-366, 2017. doi: 10.1038/nrc.2017.28.
J. Sholl, G. D. Sepich-Poore, R. Knight, and T. Pradeu, "Redrawing therapeutic boundaries: microbiota and cancer," Trends in Cancer, vol. 8, no. 2, pp. 87-97, 2022. doi: 10.1016/j.trecan.2021.10.008.
L. Martínez-Lostao, A. Anel, and J. Pardo, "How do cytotoxic lymphocytes kill cancer cells?," Clinical Cancer Re-search, vol. 21, no. 22, pp. 5047-5056, 2015. doi: 10.1158/1078-0432.CCR-15-0685.
A. Dutton et al., "Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin's lymphoma cells from autonomous Fas-mediated death," Proceedings of the National Academy of Sciences, vol. 101, no. 17, pp. 6611-6616, 2004. doi: 10.1073/pnas.040076510.
R. Rosenzweig, N. B. Nillegoda, M. P. Mayer, and B. Bukau, "The Hsp70 chaperone network," Nature Reviews Mo-lecular Cell Biology, vol. 20, no. 11, pp. 665-680, 2019. doi: 10.1038/s41580-019-0133-3.
D. Balchin, M. Hayer‐Hartl, and F. U. Hartl, "Recent advances in understanding catalysis of protein folding by mo-lecular chaperones," FEBS Letters, vol. 594, no. 17, pp. 2770-2781, 2020. doi: 10.1002/1873-3468.13844.
M. P. Mayer, "The Hsp70-chaperone machines in bacteria," Frontiers in Molecular Biosciences, vol. 8, p. 694012, 2021. doi: 10.3389/fmolb.2021.694012.
Y. J. Dawood, M. A. Mahdi, A. H. Jumaa, R. Saad, and R. M. Khadim, "Evaluation of LH, FSH, oestradiol, prolactin and tumour markers CEA and CA-125 in sera of Iraqi patients with endometrial cancer," Scripta Medica, vol. 55, no. 4, pp. 419-426, 2024. doi:10.5937/scriptamed55-49925.
M. E. Murphy, "The HSP70 family and cancer," Carcinogenesis, vol. 34, no. 6, pp. 1181-1188, 2013. doi: 10.1093/carcin/bgt111.
P. Yan, T. Wang, M. L. Guzman, R. I. Peter, and G. Chiosis, "Chaperome networks–redundancy and implications for cancer treatment," HSF1 and Molecular Chaperones in Biology and Cancer, Advances in Experimental Medicine and Biolo-gy, vol. 1243, pp. 87-99, 2020. doi: 10.1007/978-3-030-40204-4_6.
D. Kunachowicz, M. Król-Kulikowska, W. Raczycka, J. Sleziak, M. Błażejewska, and J. Kulbacka, "Heat shock pro-teins, a double-edged sword: significance in cancer progression, chemotherapy resistance and novel therapeutic per-spectives," Cancers, vol. 16, no. 8, p. 1500, 2024. doi: 10.3390/cancers16081500.
M. K. Singh et al., "Heat shock response and heat shock proteins: Current understanding and future opportunities in human diseases," International Journal of Molecular Sciences, vol. 25, no. 8, p. 4209, 2024. doi: 10.3390/ijms25084209.
M. Shevchenko, E. Servuli, Z. Albakova, L. Kanevskiy, and A. Sapozhnikov, "The role of heat shock protein 70 kDa in asthma," Journal of Asthma and Allergy, pp. 757-772, 2021. doi: 10.2147/JAA.S288886.
J. Y. Kim, S. Barua, M. Y. Huang, J. Park, M. A. Yenari, and J. E. Lee, "Heat shock protein 70 (HSP70) induction: chaperonotherapy for neuroprotection after brain injury," Cells, vol. 9, no. 9, p. 2020, 2020. doi: 10.3390/cells9092020.
Z. Albakova, G. A. Armeev, L. M. Kanevskiy, E. I. Kovalenko, and A. M. Sapozhnikov, "HSP70 multi-functionality in cancer," Cells, vol. 9, no. 3, p. 587, 2020. doi: 10.3390/cells9030587.
W. Wang, B. Cheng, L. Miao, Y. Mei, and M. Wu, "Mutant p53-R273H gains new function in sustained activation of EGFR signaling via suppressing miR-27a expression," Cell Death & Disease, vol. 4, no. 4, pp. e574-e574, 2013. doi: 10.1038/cddis.2013.97.
G. Hu et al., "The long noncoding RNA HOTAIR activates the Hippo pathway by directly binding to SAV1 in renal cell carcinoma," Oncotarget, vol. 8, no. 35, p. 58654, 2017. doi: 10.18632/oncotarget.17414.
T. T. Al-Mahdwi, A. M. Said, I. M. Hade, Y. S. Yasin, and A. H. Jumaa, "Synergistic cytotoxic impact of linagliptin-ciprofloxacin combination on cervical cancer cell line: insights into targeting heat shock protein 60," Asian Pacific Journal of Cancer Prevention: APJCP, vol. 26, no. 6, p. 2117, 2025. doi: 10.31557/APJCP.2025.26.6.2117.
M. A. Mahdi, A. H. Jumaa, Y. J. Dawood, and K. Jabbar, "Bio synthesis of silver nanoparticle using reseda lutea water extract and estimating their anti-cancer impact," International Journal of Pharmaceutical Sciences and Nanotech-nology (IJPSN), vol. 18, no. 2, pp. 7929-7945, 2025. doi: 10.37285/ijpsn.2025.18.2.5.
A. R. Stankiewicz, G. Lachapelle, C. P. Foo, S. M. Radicioni, and D. D. Mosser, "Hsp70 inhibits heat-induced apop-tosis upstream of mitochondria by preventing Bax translocation," Journal of Biological Chemistry, vol. 280, no. 46, pp. 38729-38739, 2005. doi: 10.1074/jbc.M509497200.
S. R. Salih, K. N. Abdulla, A. K. Awn, Y. S. Yasin, and A. H. Jumaa, "Impact of esomeprazole, ciprofloxacin and their combination on cervical cancer cell line proliferation: A focus on heat shock protein 70 modulation," Asian Pacif-ic Journal of Cancer Prevention: APJCP, vol. 26, no. 7, p. 2455, 2025. doi: 10.31557/APJCP.2025.26.7.2455.
G. Çetin, S. Klafack, M. Studencka-Turski, E. Krüger, and F. Ebstein, "The ubiquitin–proteasome system in immune cells," Biomolecules, vol. 11, no. 1, p. 60, 2021. doi: 10.3390/biom11010060.
Y. J. Dawood, R. Saad, M. A. Mahdi, and A. H. Jumaa, "Evaluation of LDH, AFP, β-hCG and tumour markers CEA and CA-125 in Sera of Iraqi patients with ovarian cancer," Scripta Medica, vol. 56, no. 2, pp. 275-282, 2025. doi: 10.5937/scriptamed56-56933.
A. J. Ambrose and E. Chapman, "Function, therapeutic potential, and inhibition of Hsp70 chaperones," Journal of Medicinal Chemistry, vol. 64, no. 11, pp. 7060-7082, 2021. doi: 10.1021/acs.jmedchem.0c02091.
M. A. Mahdi, A. H. Jumaa, and Y. J. Dawood, "Clinical investigation of IL-31, TOS and GSH in the Sera of gastric cancer females patients in Iraq," Asian Pacific Journal of Cancer Prevention: APJCP, vol. 26, no. 2, p. 587, 2025. doi: 10.31557/APJCP.2025.26.2.587.
B. Nitzsche, M. Höpfner, and B. Biersack, "Synthetic small molecule modulators of Hsp70 and Hsp40 chaperones as promising anticancer agents," International Journal of Molecular Sciences, vol. 24, no. 4, p. 4083, 2023. doi: 10.3390/ijms24044083.
S. R. Salih, A. H. Majeed, K. M. Hussein, Y. S. Yasin, and A. H. Jumaa, "Dual drug repurposing in cervical cancer: the synergistic cytotoxic effect of dapagliflozin-etoricoxib and its predicted modulation of PI3K/Akt/mTOR signal-ing via molecular docking," Asian Pacific Journal of Cancer Biology, vol. 10, no. 4, pp. 821-835, 2025. doi: 10.31557/APJCB.2025.10.4.821-835.
M. J. Braunstein et al., "Antimyeloma effects of the heat shock protein 70 molecular chaperone inhibitor MAL3‐101," Journal of Oncology, vol. 2011, no. 1, p. 232037, 2011. doi: 10.1155/2011/232037.
B. Preti et al., "Discovery and Structure–Activity Relationship Studies of Novel Adenosine A1 Receptor-Selective Agonists," Journal of Medicinal Chemistry, vol. 65, no. 21, pp. 14864-14890, 2022. doi: 10.1021/acs.jmedchem.2c01414.
J. Hosfelt et al., "An allosteric inhibitor of bacterial Hsp70 chaperone potentiates antibiotics and mitigates re-sistance," Cell Chemical Biology, vol. 29, no. 5, pp. 854-869. e9, 2022. doi: 10.1016/j.chembiol.2021.11.004.
Z. Albakova, Y. Mangasarova, and A. Sapozhnikov, "Heat shock proteins in lymphoma immunotherapy," Frontiers in Immunology, vol. 12, p. 660085, 2021. doi: 10.3389/fimmu.2021.660085.
H. Feng, R. Yang, Y. Du, Y. Liu, and F. Niu, "Research and development progression of oridonin for hematological malignancies therapy," Current Medicinal Chemistry, vol. 32, no. 23, pp. 4713-4724, 2025. doi: 10.2174/0109298673273034231215190811.
K. Wen, Z. Fu, X. Wu, J. Feng, W. Chen, and J. Qian, "Oct-4 is required for an antiapoptotic behavior of chemo-resistant colorectal cancer cells enriched for cancer stem cells: effects associated with STAT3/Survivin," Cancer Let-ters, vol. 333, no. 1, pp. 56-65, 2013. doi: 10.1016/j.canlet.2013.01.009.
F. Simonetta and F. Bertoni, "An epigenetic signature in CD19-CAR T cells predicts clinical outcome," Trends in Can-cer, vol. 8, no. 2, pp. 81-82, 2022. doi: 10.1016/j.trecan.2021.12.005.
A. Jarad, et al., "Diabetic wound healing enhancement by Tadalafil," International Journal of Pharmaceutical Research, vol 12, no. 3, p841, 2020. doi: 10.31838/ijpr/2020.12.03.121.
M. A. Vostakolaei, L. Hatami‐Baroogh, G. Babaei, O. Molavi, S. Kordi, and J. Abdolalizadeh, "Hsp70 in cancer: A double agent in the battle between survival and death," Journal of Cellular Physiology, vol. 236, no. 5, pp. 3420-3444, 2021. doi: 10.1002/jcp.30132.
J. Yang, Z. Liu, S. Perrett, H. Zhang, and Z. Pan, "PES derivative PESA is a potent tool to globally profile cellular targets of PES," Bioorganic & Medicinal Chemistry Letters, vol. 60, p. 128553, 2022. doi: 10.1016/j.bmcl.2022.128553.
K. Kwong et al., "In vivo manipulation of the protein homeostasis network in rhabdomyosarcoma," Oncotarget, vol. 16, p. 681, 2025. doi: 10.18632/oncotarget.28764.
R. Mitra, C. M. Adams, W. Jiang, E. Greenawalt, and C. M. Eischen, "Pan-cancer analysis reveals cooperativity of both strands of microRNA that regulate tumorigenesis and patient survival," Nature Communications, vol. 11, no. 1, p. 968, 2020. doi: 10.1038/s41467-020-14713-2.
W. Yang et al., "Mebendazole induces ZBP-1 mediated PANoptosis of acute myeloid leukemia cells by targeting TUBA1A and exerts antileukemia effect," Journal of Advanced Research, 2025. doi: 10.1016/j.jare.2025.02.013.
B. S. Kumar, P. K. Gopal, A. Gurao, and R. Verma, "Binary role of heat shock proteins in cancer immunotherapy: A detailed perspective," in Heat Shock Proteins in Inflammatory Diseases, A.A. Alexander and P.K. Asaur Eds. Springer, 2020, pp. 387-405. doi: 10.1007/7515_2020_34.
G. Courties et al., "In vivo RNAi-mediated silencing of TAK1 decreases inflammatory Th1 and Th17 cells through targeting of myeloid cells," Blood, vol. 116, no. 18, pp. 3505-3516, 2010. doi: 10.1182/blood-2010-02-269605.
T. E. Chavas et al., "A macrophage-targeted platform for extending drug dosing with polymer prodrugs for pulmo-nary infection prophylaxis," Journal of Controlled Release, vol. 330, pp. 284-292, 2021. doi: 10.1016/j.jconrel.2020.11.031.
A. B. Meriin, V. L. Gabai, J. Yaglom, V. I. Shifrin, and M. Y. Sherman, "Proteasome inhibitors activate stress kinases and induce Hsp72: diverse effects on apoptosis," Journal of Biological Chemistry, vol. 273, no. 11, pp. 6373-6379, 1998. doi: 10.1074/jbc.273.11.6373.
F. Freisleben et al., "Mebendazole mediates its anti-leukemic effects by proteasomal degradation of GLI transcription factors via inhibition of HSP70/90-chaperone activity in acute myeloid leukemia in a preclinical and clinical setting," Blood, vol. 134, p. 5050, 2019. doi: 10.1182/blood-2019-129973.
F. Dal Piaz et al., "Chemical proteomics reveals HSP70 1A as a target for the anticancer diterpene oridonin in Jurkat cells," Journal of Proteomics, vol. 82, pp. 14-26, 2013. doi: 10.1016/j.jprot.2013.01.030.
Downloads
How to Cite
Article Metrics
Published
Issue
Section
License
Copyright (c) 2026 Azal Hamoody Jumaa, Sadeq Jaafer Al-Tameemi, Muthanna Atia Sabah, Youssef Shakuri Yasin (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.











